Featured Product

    BoE Paper Discusses AI and Software Validation Challenges

    November 01, 2021

    The Bank of England (BoE) published a paper on software validation and artificial intelligence in finance. The use of machine learning and artificial intelligence in finance poses growing risks for software validation to financial institutions, markets, and decision makers, making it a key priority for regulators. This paper discusses accepted software validation practices, highlights challenges to those practices introduced by artificial intelligence and potential solutions, and suggests areas of focus for developers when creating artificial intelligence-based solutions for the finance industry. The paper also discusses how practices may need to evolve to respond to these new challenges and is intended to inform policymakers and governance bodies, while also raising awareness among decision makers in financial institutions.

    The paper concludes that the following key points should be borne in mind by financial institutions when developing artificial intelligence/machine learning solutions to support the provision of financial services:

    • Machine learning software development is data-driven, making the technology hard to test conventionally, and the challenges are further exacerbated by end-to-end machine learning systems. Software validation may need to move from testing based on requirements to validation based on representative test datasets. These should include corner cases or tail event cases, representing scenarios not catered for by training datasets.
    • Machine learning “black box” nature can make it impossible to interpret how decisions are made. Explainability techniques may help attribute which factors are most important in a decision making process, but this may not enable identifying which part of a big machine learning model framework is responsible for any undesirable model behavior. Entanglement can also mean inputs are not independent with complex interdependencies between machine learning components. Decomposing machine learning models into smaller parts to generate decisions can add clarity although such opportunities may diminish as machine learning architectures become more end-to-end.
    • The characteristics of training datasets fundamentally influence machine learning model behavior, potentially replicating or amplifying dataset bias. Training datasets must be validated to ensure they are correct and representative, addressing outlier data elements and faulty labels. Datasets used for different purposes such as machine learning training, calibrating machine learning models or checking the accuracy of machine learning models should be free of common biases or flaws to ensure that they are fit for the specific use case that they are applied to. Emergent solutions exist to ensure that datasets are fit for purpose including: repeating data selection in a random way; formally documenting the composition, collection process, recommended uses, and inherent biases of datasets; development of methodologies to detect faulty or skewed datasets; and network graphs to visualize datasets and highlight data relationships graphically.
    • Using parallel processing to support machine learning models can result in unintended or inconsistent outputs disruption if the ordering of computational steps and processing takes place out of sequence because of poor overall modeling framework. It is important that the machine learning models, particularly when there are interdependencies among components and different sub-models, have robust controls over the ordering of computation steps.
    • Machine learning models are non-deterministic in nature. Some commentators have observed challenges associated with integrating non-deterministic machine learning models with software components that are deterministic/procedural in nature, when, for example, the output of an machine learning model changes qualitatively over time, due to re-calibration, impacting integrated software components.

    The paper also provides, for consideration of the policy makers and firms’ governance bodies, a checklist for artificial intelligence software validation. The paper, however, does not focus much on application-specific challenges, which can be considered as a next step where more opinions from subject-matter experts can be incorporated. Similarly, as a next step, one can try to work on more application-specific financial regulations highlighting any gap in existing regulations in a more explicit manner. Machine learning, and artificial intelligence in general, can also help to automate a lot of the existing testing processes and may improve the existing capacity to test software, improving resilience. Therefore, creating the right framework for artificial intelligence software testing could yield wide-reaching benefits, with the appropriate regulatory focus.


    Related Links

    Keywords: Europe, UK, Banking, Artificial Intelligence, Machine Learning, Regtech, Software Validation, Modeling Risk, Model Explainability, BoE

    Related Articles

    BIS and Central Banks Experiment with GenAI to Assess Climate Risks

    A recent report from the Bank for International Settlements (BIS) Innovation Hub details Project Gaia, a collaboration between the BIS Innovation Hub Eurosystem Center and certain central banks in Europe

    March 20, 2024 WebPage Regulatory News

    Nearly 25% G-SIBs Commit to Adopting TNFD Nature-Related Disclosures

    Nature-related risks are increasing in severity and frequency, affecting businesses, capital providers, financial systems, and economies.

    March 18, 2024 WebPage Regulatory News

    Singapore to Mandate Climate Disclosures from FY2025

    Singapore recently took a significant step toward turning climate ambition into action, with the introduction of mandatory climate-related disclosures for listed and large non-listed companies

    March 18, 2024 WebPage Regulatory News

    SEC Finalizes Climate-Related Disclosures Rule

    The U.S. Securities and Exchange Commission (SEC) has finalized the long-awaited rule that mandates climate-related disclosures for domestic and foreign publicly listed companies in the U.S.

    March 07, 2024 WebPage Regulatory News

    EBA Proposes Standards Related to Standardized Credit Risk Approach

    The European Banking Authority (EBA) has been taking significant steps toward implementing the Basel III framework and strengthening the regulatory framework for credit institutions in the EU

    March 05, 2024 WebPage Regulatory News

    US Regulators Release Stress Test Scenarios for Banks

    The U.S. regulators recently released baseline and severely adverse scenarios, along with other details, for stress testing the banks in 2024. The relevant U.S. banking regulators are the Federal Reserve Bank (FED), the Federal Deposit Insurance Corporation (FDIC), and the Office of the Comptroller of the Currency (OCC).

    February 28, 2024 WebPage Regulatory News

    Asian Governments Aim for Interoperability in AI Governance Frameworks

    The regulatory landscape for artificial intelligence (AI), including the generative kind, is evolving rapidly, with governments and regulators aiming to address the challenges and opportunities presented by this transformative technology.

    February 28, 2024 WebPage Regulatory News

    EBA Proposes Operational Risk Standards Under Final Basel III Package

    The European Union (EU) has been working on the final elements of Basel III standards, with endorsement of the Banking Package and the publication of the European Banking Authority (EBA) roadmap on Basel III implementation in December 2023.

    February 26, 2024 WebPage Regulatory News

    EFRAG Proposes XBRL Taxonomy and Standard for Listed SMEs Under ESRS

    The European Financial Reporting Advisory Group (EFRAG), which plays a crucial role in shaping corporate reporting standards in European Union (EU), is seeking comments, until May 21, 2024, on the Exposure Draft ESRS for listed SMEs.

    February 23, 2024 WebPage Regulatory News

    ECB to Expand Climate Change Work in 2024-2025

    Banking regulators worldwide are increasingly focusing on addressing, monitoring, and supervising the institutions' exposure to climate and environmental risks.

    February 23, 2024 WebPage Regulatory News
    RESULTS 1 - 10 OF 8957