Featured Product

    ACPR Seeks Views on Governance of Artificial Intelligence in Finance

    July 09, 2020

    ACPR published a discussion paper on the governance of artificial intelligence in finance. In this paper, ACPR has proposed four principles for evaluating artificial intelligence algorithms and tools—namely, data management, performance, stability, and explainability. ACPR also recommends the governance concerns that need to be taken into account, as early as the design phase of an algorithm. These concerns involve the integration of artificial intelligence into traditional business processes; the impact of this integration on internal controls; the relevance of outsourcing (partially or fully) the design or maintenance phases; and the internal and external audit functions. The comment period for this discussion paper ends on September 04, 2020.

    The governance of artificial intelligence algorithms requires careful consideration of the validation of each decision-making process. The regulatory compliance and the performance objectives of these algorithms are only achievable through a certain level of explainability and traceability. In the discussion paper, ACPR recommends focus on the following aspects of governance concerns:

    • Integration of artificial intelligence into business processes. This involves ascertaining whether the artificial intelligence component fulfills a critical function, by dint of its operational role or of the associated compliance risk and whether the engineering process follows a well-defined methodology throughout the machine learning lifecycle (from algorithmic design to monitoring in production), in the sense of reproducibility, quality assurance, architectural design, auditability, and automation.
    • Human-algorithm interactions. Those can require a particular kind of explainability, intended either for internal operators who need to confirm or reject an algorithm’s output, or for customers who are entitled to understand the decisions impacting them or the commercial offers made to them. Besides, processes involving artificial intelligence often leave room for human intervention, which is beneficial or even necessary, but also bears new risks. Such new risks include the introduction of biases into the explanation of an 4 algorithm’s output, or a stronger feeling of engaging one’s responsibility when contradicting the algorithm than when confirming its decisions.
    • Security and outsourcing. Machine learning models are exposed to new kinds of attacks. Furthermore, strategies such as development outsourcing, skills outsourcing, and external hosting should undergo careful risk assessment. More generally, third-party risks should be evaluated.
    • Initial and continuous validation process. This process must often be re-examined when designing an artificial intelligence algorithm intended for augmenting or altering an existing process. For instance, the governance framework applicable to a business line may in some cases be maintained, while, in other cases, it will have to be updated before putting the artificial intelligence component into production. Continuous validation process. The continuous monitoring of machine learning algorithm, for instance, requires technical expertise and machine-learning-specific tools to ensure the aforementioned principles are followed over time (appropriate data management, predictive accuracy, stability, and availability of valid explanations).
    • Audit. For internal and external audits of artificial-intelligence-based systems in finance, exploratory work led by the ACPR suggests adopting a dual approach. The first facet combines analysis of the source code and data with methods for documenting artificial intelligence algorithms, predictive, models and datasets. The second facet leverages methods providing explanation for an individual decision or for the overall behavior of the algorithm; it also relies on two techniques for testing an algorithm as a black box: challenger models (to compare against the model under test) and benchmarking datasets, both curated by the auditor.  

     

    Related Links

    Comment Due Date: September 04, 2020

    Keywords: Europe, France, Banking, Insurance, Governance, Artificial Intelligence, Fintech, Machine Learning, Regtech, Outsourcing Arrangements, ACPR

    Related Articles
    News

    BSP Tackles Aspects of Lending and Islamic, Open & Sustainable Finance

    The Central Bank of the Philippines (BSP) issued communications covering developments related to online lending platforms, open finance framework and roadmap, and on the expected regulations in the area sustainable finance.

    January 16, 2022 WebPage Regulatory News
    News

    US Agencies Issue Regulatory Updates, FDIC Launches Tech Sprint

    The Board of Governors of the Federal Reserve System (FED) published the final rule that amends Regulation I to reduce the quarterly reporting burden for member banks by automating the application process for adjusting their subscriptions to the Federal Reserve Bank capital stock, except in the context of mergers.

    January 13, 2022 WebPage Regulatory News
    News

    EBA Issues Guide on Bank Resolvability, Consults on Transferability

    The European Banking Authority (EBA) published its assessment of risks through the quarterly Risk Dashboard and the results of the Autumn edition of the Risk Assessment Questionnaire (RAQ).

    January 13, 2022 WebPage Regulatory News
    News

    MFSA Publishes CRD5 Updates and Supervisory Priorities for 2022

    The Malta Financial Services Authority (MFSA) updated the guidelines on supervisory reporting requirements under the reporting framework 3.0.

    January 13, 2022 WebPage Regulatory News
    News

    HKMA Extends Repayment for Trade Facilities, Consults on Crypto-Assets

    The Hong Kong Monetary Authority (HKMA) published a circular, along with the reporting form and instructions, for self-assessment, by authorized institutions, of compliance with the Code of Banking Practice 2021.

    January 12, 2022 WebPage Regulatory News
    News

    FCA Registers Securitization Repositories; PRA Issues 2022 Priorities

    The Financial Conduct Authority (FCA) decided to register European DataWarehouse Ltd and SecRep Limited as securitization repositories under the UK Securitization Regulation, with effect from January 17, 2022.

    January 12, 2022 WebPage Regulatory News
    News

    EC Regulation Sets Out Methods for Measuring K-Factors Under IFR

    The European Commission (EC) published the Delegated Regulation 2022/25, which supplements the Investment Firms Regulation (IFR or Regulation 2019/2033) with respect to the regulatory technical standards specifying the methods for measuring the K-factors referred to in Article 15 of the IFR.

    January 11, 2022 WebPage Regulatory News
    News

    BIS Studies How Platform Models Impact Financial Stability & Inclusion

    The Bank of International Settlements (BIS) published a paper that assesses the ways in which platform-based business models can affect financial inclusion, competition, financial stability and consumer protection.

    January 10, 2022 WebPage Regulatory News
    News

    CBE Issues Additional Measures to Ease Disruptions from Pandemic

    The Central Bank of Egypt (CBE) published a circular with instructions on emergency liquidity assistance to banks that are unable to meet their liquidity requirements.

    January 10, 2022 WebPage Regulatory News
    News

    ESAs Publish List of Financial Conglomerates for 2021

    The European Supervisory Authorities (ESAs) published the list of identified financial conglomerates for 2021.

    January 07, 2022 WebPage Regulatory News
    RESULTS 1 - 10 OF 7868