
 



 



  

  

  

 

  

 

 

  

 

 





 
Evaluating economic capital models for credit risk is important for both financial institutions and regulators. 

However, a major impediment to model validation remains limited data in the time series due to the following 

issues. First, defaults are rare events. One can only observe a limited number of events where extreme losses were 

realized; second, credit risk models typically estimate value distribution over a one-year horizon, and the number of 

non-overlapping years is limited in availability. This problem differs from the analysis of market risk, which focuses 

on a much shorter horizon.  

The data constraint makes it difficult to transfer the methodology applied to back-testing market risk models to 

credit risk models, which require a very long time period to produce sufficient observations for reasonable tests of 

forecast accuracy. To overcome the data limitations, Lopez and Saidenberg (2000) suggested cross-sectional 

resampling techniques, which resample from the original panel dataset of credits to generate additional credit 

default/loss data for model evaluation. Frerichs and Löffler (2002) suggested a Berkowitz (2001) procedure to detect 

mis-specified parameters in asset value models, focusing on asset correlations. The authors conducted Monte Carlo 

simulations to show that a loss history of ten years can be sufficient to detect mis-specified asset correlation in a 

two-state credit risk model, but, when applying the test to a multi-state credit risk model, the authors found 

“incorporating migration and recovery rate uncertainty reduces the test’s power.”1 BCBS (2009) interpreted 

validation more expansively as an evaluation of all the processes that provide evidence-based assessment regarding 

an EC model's fitness for purpose. The types of validation processes are qualitative processes (e.g., use test, 

management oversight and data quality checks, etc.) and quantitative processes such as validation of inputs and 

parameters, benchmarking, back testing, etc. Following these supervisory standards, Jacobs (2010) surveyed the 

different existing EC model validation practices in the banking industry and illustrated several quantitative 

approaches (benchmarking, sensitivity analysis, and testing for predictive accuracy) by presenting results of a bank 

risk aggregation study from Inanoglu, et al (2010).  

In general, there has been limited research that either empirically evaluates credit portfolio risk models or that 

theoretically develops statistical evaluation methods. In its 2009 report, “Range of Practices and Issues in Economic 

Capital Frameworks,” the Basel Committee on Banking Supervision recognizes that so far proposed statistical tests 

of portfolio credit models have weak power. “… The validation of economic capital models is at a very preliminary 

stage. … The validation techniques are powerful in some areas such as risk sensitivity but not in other areas such as 

overall absolute accuracy or accuracy in the tail of the loss distribution.” 

While these approaches provide insights into credit portfolio model validation, little is known empirically about the 

performance of a credit portfolio model. Given the challenges, we proceed by focusing on the parts of the 

distribution for which we have data. We illustrate a validation approach using historical corporate default experience 

dating back to 1983. This extensive data set is comprised of the defaults associated the firms rated by Moody’s 

Investors Service (MIS) and the defaults associated with public firms collected by Moody’s Analytics (MA).2 We 

construct predicted default distributions using different types of PD and correlation inputs, and we then examine 

how the predicted distribution compares with the realized distribution. We compare by looking at the percentiles of 

realized defaults with respect to the predicted default distributions. We next look at the performance of two typical 

portfolio parameterizations: (1) a through-the-cycle style parameterization using agency ratings-based long-term 

average default rates, and Basel II correlations, and (2) a point-in-time style parameterization using public EDF 

credit measure, and Moody’s Analytics Global Correlation Model (GCorr). 

The remainder of this paper is organized as follows: 

 Section 2 presents the validation procedure.  

 Section 3 describes the data for portfolio construction and alternative PD and correlation inputs.  

                                                 

 
1 The two-state credit risk model neglects migration risk and assume zero recovery for all loans. As a consequence, the loss 

distribution is fully described by the distribution of the number of defaults within a portfolio. The multi-state model incorporates 

both migration risk and recovery rate uncertainty. 
2 For Moody’s definition of default, see “Corporate Default and Recovery Rates, 1920−2010” (2011). 



 Section 4 discusses a comparison of realized default rates and predicted default rates under two test 

scenarios.  

 Section 5 concludes.  

 

 
Our procedure begins with a portfolio of credit exposures of N companies active during the beginning of a year. A 

credit portfolio model parameterized with default probabilities and correlations implies a distribution of default 

rates. The corresponding percentile of realized defaults is determined with respect to the estimated distribution of 

default counts. We estimate a percentile for each year. If the predicted loss distribution is equal to the true one, the 

obtained percentiles should follow independent and identically distributed uniform distributions.3  

Rosenblatt (1952) defines the transformation  

   ∫  ̂
  
  

( )    ̂(  )     (1) 

Where   is the ex post portfolio profit/loss realization and  ̂( ) is the ex ante forecast loss density. Rosenblatt shows 

that when applying the estimate cumulative distribution function  ̂( ) to observed losses, if the estimated loss 

distribution is equal to the true one, the transformed variable    follows i.i.d. U(0,1).  

The detailed procedures follow. We create two sets of equally-weighted, vanilla term loan portfolios consisting of 

(1) all the MIS rated corporate firms and (2) all the non-financial public firms active in January of the test years. The 

number of active firms differs across time, so that the composition of the yearly portfolios varies over time for both 

portfolios. For each name, depending upon the test scenario, we assign a PD value upon either a rating-mapped PD 

or an EDF credit measure, and we then assign a GCORR correlation or asset correlation used by the Basel II 

IRB.
4
All loans have a 0% annual fixed rate coupon LGD of 100% and a one year maturity.  

We analyze portfolios in Moody’s Analytics RiskFrontier™ to obtain portfolio value distributions at a one year 

horizon using one million simulation trials. Because the LGD is set to 100% and no coupons are accumulated before 

horizon, the portfolio value distribution is then converted to a distribution of realized default. For example, suppose 

a portfolio has 100 instruments at the beginning of the year, each with a $1 million of commitment amount, i.e., 

$100 million in total. With zero defaults, the portfolio value should remain $100 million. If, on a particular trial, the 

portfolio value is $95 million, the associated loss is $5 million and the number of defaulted obligors is five in this 

trial. Similarly, one can calculate the number of defaults in other trials and tabulate results from each trial to 

construct a default distribution.   

We next determine which percentile of the predicted distribution is associated with the realized default. Suppose 

during a given year, the actual number of defaults is 10, which lies at the 95th percentile of the estimated default 

distribution mentioned above. We record a 95th percentile value for that year. Repeating this exercise for the 

remaining years, we obtain a time series of mapped percentiles. If the model is correct, every percentile value should 

occur in [0,100] with the same probability. In other words, the percentiles should be independent and identically 

uniformly distributed. In addition, the frequency of exceptions (the number of actual defaults that exceed the number 

of predicted defaults indicated by VaR estimate) should be in-line with the selected target level of confidence. For 

example, for VaR calculated at 99% confidence interval, exceptions can be expected every 100 mapped percentiles.  

The following figure provides a visual representation of the mapping process. Each dot “•” in the right hand plot 

represents the mapped percentile of realized defaults with respect to the model-implied distribution at the specified 

year. The model-implied distribution varies each year due to the change in portfolio composition and the changes in 

PD and correlation.  

                                                 

 
3 See Rosenblatt (1952) and Berkowitz (2001) for details of the Rosenblatt transformation.  
4 The brief description of these two correlation measures can be found in Section 3.  



 

 

Figure 2 through Figure 5 show examples of inaccurate models of various kinds. In Figure 2, the percentiles are near 

the top end of the range, suggesting that the model underestimates the probabilities of defaults so that the realized 

defaults largely fall into the tail region of the estimated distribution. On the contrary, if the model overestimates the 

probabilities of defaults, the realized defaults tend to concentrate on the low end of the estimated default 

distribution. The level of mapped percentiles becomes low, as shown in Figure 3. 

 

 

 

 

1

p50

Predicted default distribution

Realized Defaults

p50

Predicted Defaults

F
re

q
u

e
n

c
y

p90p10

Percentiles of realized defaults with 

respect to predicted default distribution

0

100

Y1 Y2

P
e

rc
e

n
ti

le

YearY3 …

p90

p10
Y2Y1Y3

2

0

100

Y1 Y2

P
e

rc
e

n
ti

le

YearY3 …

The average percentile is too high.

Realized Defaults

F
re

q
u

e
n

c
y

Predicted default distribution

3

0

100

Y1 Y2

P
e

rc
e

n
ti

le

YearY3 …

The average percentile is too low.

Realized Defaults

F
re

q
u

e
n

c
y

Predicted default distribution



We now explore the impact of correlations upon the distribution of percentiles under the assumption that the PD 

model is correct, and that the average PD is consistent with the average realized default rate. In Figure 4, we see that 

the percentile values are widely scattered, located around either the top or the bottom of the range. The large 

dispersion of dots indicates that the model underestimates the correlation between obligors, as the model fails to 

capture the extreme co-movements corresponding to joint defaults of underlying credits. Figure 5 shows the 

opposite scenario. The model’s correlation overestimation results in realized values falling within a narrow range 

around 50 percent. The dispersion of percentile values is limited. 

 

 

 

 

  

 

The following plot shows an example of a good model. On average, the realized defaults lie around the 50th 

percentile of the predicted default distribution. With a 10% of VaR level, 90 percent of dots are expected to lie 

between the 5th and 95th percentiles.  
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There are a variety of statistical tests available for accessing the adequacy of VaR measures. Kupiec’s (1995) 

proportion of failures Test (POF test) is a well known VaR back testing procedure. It examines whether the 

frequency of exceptions is in line with the selected target level (unconditional coverage property).5 The exception is 

defined as the case where the number of actual defaults exceeds the number of predicted defaults indicated by VaR 

estimate. If the number of exceptions is less than what the selected confidence level would indicate, the model 

overestimates risk. On the contrary, too many exceptions signal underestimation of risk. A shortcoming of the POF 

test is that it does not examine the extent to which the independence property is satisfied. An accurate VaR measure 

should exhibit both the independence and unconditional coverage property. Christoffersen’s (1998) proposed 

Markov tests examine whether or not the likelihood of a VaR violation depends upon whether or not the violation 

occurred during the previous period. Christoffersen and Pelletier further suggest a duration test (2004) using the 

insight that the time between VaR violations should not exhibit any kind of time dependence. Crnkovic and 

Drachman (1997) suggest the test on unconditional coverage and independence property to multiple VaR levels 

instead of a single VaR level, to take the magnitude of the violations into account. Finally, Lopez (1999b) suggested 

loss function-based approaches.  

Unfortunately, the above tests have weak statistical power when using small datasets. Take the POF test as an 

example. Violations occur rarely (the target probability is usually set small), and therefore testing whether violations 

form a Bernoulli requires a large sample size. Although a variety of statistic tests exist, these tests are data-intensive 

and not practical for validating credit portfolio models that describe extreme losses.  

 

 
In this study, we use two default databases: defaults included in the Moody’s Investors Service (MIS) and in the 

Moody’s Analytics (MA) default database, collected and updated from numerous print and online sources 

worldwide. For the MIS default database, we focus on defaults associated with Moody’s-rated corporate issuers, 

given that rated defaults are better documented than unrated defaults. Moody’s uses the senior ratings algorithm 

                                                 

 

5 See Kupiec (1995) for the description of the test. 
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(SRA) to derive issuer-level ratings and are referred to as estimated senior ratings.6 We employ data after 1983 in 

order to make sure the rated firms have consistent ratings during the sample period. These ratings are used as one of 

the PD inputs in our tests. The second data source, MA’s default database of non-financial public companies 1980 

and 2010, is the most extensive public company default database available.  

 

The PD inputs for public companies come from Moody’s Analytics EDFTM (Expected Default Frequency) credit 

measures − probabilities of default for firms with publicly traded equity and published financial statements derived 

using the Vasicek-Kealhofer (VK) model. This model provides a rich framework that treats equity as a perpetual 

down-and-out option on the underlying assets of the firm. This framework incorporates five different classes of 

liabilities: short-term liabilities, long-term liabilities, convertible debt, preferred shares, and common shares. The 

VK model uses an empirical mapping based on actual default data to get the default probabilities, known as EDF 

credit measures. Volatility is estimated through a Bayesian approach that combines a comparables analysis with an 

iterative approach. For an overview of the EDF credit measure, see Crosbie and Bohn (2003).  

 

The following figures show the number of unique firms and the associated defaults by year for the MIS and MA 

databases, respectively. Both datasets provide global coverage. 

 

 

 

                                                 

 
6
 Before 1983, the broad rating category is: Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C. Since April 1982, numerical modifiers (using the 

1, 2, 3 modifiers) were appended to each generic rating classification from Aa through Caa. See “Moody’s Senior Ratings 

Algorithm & Estimated Senior Ratings” (2009) for details.  
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Note the default databases from MIS and MA used here have different data coverage. If a company has debt rated by 

MIS but does not have public equity, then its default is not recorded in the MA database.  

 

We use two types of correlation measures.7 The first one is defined by the Basel II IRB formula as follows. 

 

 

    (
 -    (-    )

 -    (- )
)    ( -

 -    (-    )

 -    (- )
)         (2) 

 

Parameters a, b, and c depend upon borrower type. For corporate borrowers, a=0.12, b=0.24, and c=50. The above 

expression indicates that the asset correlation parameter R is a decreasing function of PD.8  

The alternative correlation measure is Moody’s Analytics global asset correlation (GCorr), a multi-factor model 

estimated from weekly asset return series. The asset returns are derived from equity returns and liability structure 

information using an option-theoretic framework. The GCorr model has broad data coverage. For example, it covers 

more than 34,000 firms in 49 countries and 61 industries, January 2008 through June 2009. First released in 1996, 

the GCorr model is updated on a regular basis to reflect the most recent dynamics of firms’ businesses and 

industries.  

One common default data collection challenge remains the fact that small public companies often disappear without 

any news or record before they default, or they do not publicly disclose missed payments, both of which creates a 

number of hidden defaults. To alleviate this hidden defaults problem, in the second case, we restrict the sample to 

firms above at least $300 million in annual sales, where we believe hidden defaults are less of an issue. We discuss 

the hidden default issue further in Section 4.2. 

                                                 

 
7
 For details of the Basel II correlation, see the Basel Committee on Banking Supervision, “International Convergence on Capital 

Measurement and Capital Standards,” (2006). For the GCorr model, see Moody’s Analytics document “An Overview of 

Modeling Credit Portfolios,” (2008).  

8 
See the Basel Committee on Banking Supervision, (2006), “International Convergence on Capital Measurement and Capital 

Standards.” 
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We create two portfolios for test purposes. Portfolio-specific settings are highlighted in the following input table in 

order to make a distinction. 

 

 

 

 

 

 

 

 

We choose these cases as they represent common parameterization approaches by risk management groups at 

financial institutions. Case 1 represents a regulatory-style parameterization where Basel correlations are used, and 

default probabilities are based upon a measure frequently associated with a through-the-cycle concept. Meanwhile, 

Case 2 represents a more point-in-time measure, where both PDs and correlations are parameterized using forward 

looking measures. 

One may notice that if the above two approaches are applied to common datasets the results would be more directly 

comparable. However, the limited data of public companies with rating histories in our database precludes such an 

attempt.  

 

In Case 1, we use the long term average of the actual default rate by rating as the PD estimate. As a result, firms 

with same rating are assigned the same PD value regardless of the sample year. The long term average PD is free of 

the credit cycle effect and reflects the long-run credit risk level. Table 2 shows the mapping from the rating to long-

term average default rate.9  

 

                                                 

 

9 The long-term average default probability is calculated from raw empirical data and may not increase monotonically as the 

rating drops. 

 



 

The following figure shows the portfolio composition by letter rating. The composition is relatively stable over time. 

“Aaa” through “A” rated names account for the largest portion of the whole portfolio most of the time. The “Caa” 

through “C” rated names represent the smallest portion of the entire portfolio.  

 

 

As mentioned previously, we use the long-term average of the realized default rate by rating category as the PD 

estimate for each name in the portfolio in a given year. Equation (1) is then parameterized with this PD to calculate 

the corresponding correlation defined in Basel II IRB. Figure 10 shows the average PD and Basel RSQ of portfolios 

by year.  
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In Case 2, we construct yearly US portfolios by pooling all US non-financial firms available at the beginning of the 

year beginning in 1980. We use the MA EDF credit measure as the PD measure and GCorr as the correlation input. 

GCorr is a multifactor model that assumes co-movements among asset returns are driven by a set of common 

factors. Unlike historical correlations containing random noise, in addition to useful information, a well-constructed 

multifactor model produces more accurate forward-looking correlation measures. The GCorr model is updated 

regularly. Specifically, GCorr1996, GCorr1999, GCorr2002, GCorr2003, GCorr2004, GCorr2005, GCorr2006, 

GCorr2007, GCorr2009, and GCorr2010 have been released since 1996. In constructing the portfolio, we use the 

proper version of the GCorr model as of the test year. For portfolios earlier than 1996, we use the modeled R-

squared calculator for GCorr2002 to calculate modeled RSQ, as it is the earliest available version. The Modeled R-

squared Calculator is a non-linear econometric model of three underlying factors: country weight, industry weights, 

and firm size.10 

 

Figures 11 and 12 show the number of firms in the US portfolios.  

 

 

Figure 12 shows the average EDF and the GCorr RSQ.  

                                                 

 
10 See Moody’s Analytics white paper “Moody’s KMV Private Firm R-squared Model” for details.  
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We analyze the yearly portfolios above in RiskFrontier in order to obtain the estimated portfolio value/default 

distribution at the one year horizon. We then compute the percentiles of realized defaults. Note that the estimated 

distribution may not be smooth. For example, in 1983, there are 1,330 firms and 11 realized defaults in the sample 

portfolio, while in the estimated portfolio distribution, the number of 11 defaults corresponds to a range of 

percentiles from the 60th percentile to the 64th percentile. Under this circumstance, we take an average of 60 and 64 

and use the mean value of 62 as the percentile for the default realization.  

 

We now look at through-the-cycle (Case 1). In Figure 13, each diamond “♦”represents the assigned percentile after 

mapping the realized number of default to the estimated default distribution at the corresponding year under the 

Case 1 parameterization. The plot demonstrates a large swing in the percentile points and a strong serial correlation 

between percentiles. 



 

 

In Figure 14, by looking at the autocorrelation function (ACF) plot of the differenced percentile values with a 95% 

confidence band, we can identify that the autocorrelation is significant at lag 1. The autocorrelation indicates that the 

model tends to consecutively either overestimate or underestimate the number of defaults. This finding is 

understandable given that a through-the-cycle (TTC) style PD dampens the sensitivity of the PD to the 

macroeconomic conditions and does not reflect the improvement or deterioration credit quality, causing a 

consequent overestimation or underestimation of portfolio losses.  
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Using percentile values, we conduct a two-sided Kolmogorov-Smirnov Goodness-of-Fit test for uniform distribution 

[0,100] and obtain a p-value of 0.0582. The test statistic falls into the neighboring area of the rejection region if we 

specify the null hypothesis that the true distribution is a uniform distribution with a significance level of 0.05. 

 

We now look at point-in-time (Case 2). In contrast to Figure 13, Figure 15 shows that the percentile points are not 

serially correlated over time under the Case 2 parameterization. Rather, the percentiles are distributed relatively 

evenly in the interval of [0, 100], indicating a more accurate assessment of credit risk on the portfolio level. We also 

see that EDF levels are consistently conservative (i.e. high relative to realized defaults), and the percentile points 

remain below the 65th percentile of estimated distribution.  

 

 

 

It has been documented that the EDF credit measure is conservative (i.e., higher than observed default rates even at 

different annual sales restrictions) due to the hidden defaults issue.11 This failure to capture all defaults can occur for 

various reasons. For example, when a debt extension occurs, it is difficult for an outsider to know if the extension is 

caused by the borrower’s inability to pay or by legitimate business need. In other cases, when the loan amount is 

small, failure to pay is simply written off by the bank, and no public announcement is released. When default data 

collection relies upon public information to identify defaults, many default events may go missing. This scenario is 

particularly true for smaller firm borrowers whom draw little public attention.  

Moody’s Analytics’ team of specialists aggregates default data utilizing multiple information sources including, but 

not limited to: bankruptcy newsletters, rating agency debt monitoring publications, news media and news search 

engines, corporate regulatory filings, internet browsing, and targeted searching. Despite being the largest public 

default database we are aware of, it is possible that a significant number of defaults are not captured in the data, 

because in many cases distressed borrowers work out deals privately with lenders, drawing little attention in the 

media or by data collectors. As there is generally less information available for smaller companies, we believe the 

hidden default problem is larger for smaller companies. In calibrating the EDF model, we consciously employ only 

                                                 

 
11 See Crossen, Qu, and Zhang (2011), “Validating the Public EDF Model for North American Corporate Firms.” 
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large companies in mapping distance-to default to EDF levels in order to circumvent this problem. In addition, the 

mapping is constructed so the EDF measure is conservative relative to the long-term average default rate, even in the 

large company sample. 

Meanwhile, the EDF credit measures are not too conservative, as we do not observe any extremely low percentiles 

near the 0th percentile (i.e., over-estimation of the number of defaults) in Figure 15.  

Given the non-linear relationship between PD and correlation, we scale the EDF measures to match the average 

realized default rate during the period 1980−2010, while keeping the GCorr correlation unchanged. We then rerun 

the portfolios with updated PD and correlation inputs. Figure 16 shows the result. Percentiles are less extreme on the 

low end of the interval.  

 

 

After matching EDF measures and realized default rate in level, we can focus on examining the effect of correlation 

upon the distribution of percentile. By visual inspection, we see the moderate level of dispersion among percentiles 

with the points ranging from the 25th to 85th percentile, and the percentile points are still not serially correlated over 

time. This randomness is confirmed by computing autocorrelations for percentile values at varying time lags. In 

Figure 17, none of the autocorrelations at different time lags (lag1 to lag25) significantly differs from zero.  
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Using the percentile values in Figure 16, we also conduct a two-sided Kolmogorov-Smirnov Goodness-of-Fit test 

for uniform distribution [0,100] and obtain a p-value of 0.047, which rejects the null hypothesis that the true 

distribution is a uniform distribution with a significance level of 0.05. Given that the clustering of percentile points 

concentrates around the mean, we explore the uniform range of [10, 90] by repeating the test for uniform 

distribution [10, 90] and obtain a p-value of 0.233, which fails to reject the null hypothesis at a 5% of significance 

level.  

 

 
The evaluation of credit portfolio risk model is an important topic. The recent discussion on practices and issues in 

economic capital frameworks by the Basel Committee highlights this fact. An approach explored by researchers 

investigates whether or not statistical tests used in market risk can be transferred to evaluate credit risk. The 

applicability of such an approach for the validation of credit risk models is limited due to the limited number of 

historical observations available in credit risk.  

In this study, we illustrate a validation approach and provide empirical evidence on the ability of credit portfolio 

model in describing the distribution of portfolio losses. We construct yearly portfolios based upon two typical 

portfolio parameterizations: (1) a through-the-cycle style parameterization using agency ratings-based long-term 

average default rates and Basel II correlations and (2) a point-in-time style parameterization using public EDF credit 

measures and Moody’s Analytics Global Correlation Model (GCorr).We then compare the percentiles of realized 

defaults with respect to the predicted default distributions under different settings.  

Results demonstrate that the through-the-cycle style parameterization results in a less conservative view of 

economic capital and substantial autocorrelation in capital estimates. Results also demonstrate that point-in-time 

measures help produce consistent and conservative estimates of economic capital over time.  
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