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CECL Modeling Approach: Strategic and Tactical 

Considerations

Strategic 

Considerations

Tactical 

Considerations

» Portfolio materiality

» Data availability: historical and reporting-date data; internal vs. industry group

» Development costs: short-term vs. long-term investments

» Timing constraint, i.e., the remain time till effective date

» Invest in data, measurement and system capabilities for both CECL and 

other business applications

» Consider the impact of less granular quantification on competitiveness

» Consider the impacts on lending and other business decisions

» Coordination and alignment with other processes

» Interactions with various internal and external stakeholders
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1. Loss Rate Modeling with Internal and Industry Data

2. Leveraging Bank Internal Ratings for CECL

3. Summary and Discussion

Agenda



1 Loss Rate Modeling



C&I Portfolios1.a
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Leveraging Industry Data for Loss Rate Modelling
Moody’s Analytics Data Alliance

» MA Data Alliance has the world’s largest historical time series of private firm 

middle market loan data for C&I borrowers. There are 19 contributing banks in 

North America.

– Contains borrower financial statements, facility and loan information

– Over 670,000 borrowers, 1.4 million facilities, 20 million entries

– Facility information: origination date/amount, contractual maturity, unpaid balance, and net 

charge off (NCO) amounts in each quarter post default for defaulted loans

– Borrower information: internal rating/PD, industry, geographical info, size, etc.

» The data allows us to track the default, charge off and recovery of each loan 

through its lifetime, calculating lifetime loss rate at loan, segment, and portfolio 

levels
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Data Alliance Contributing Banks

Historical Loss Rate of C&I Portfolio 

» 7 million loan snapshots 

» Close to 1 million unique loans, 

80% of the banks’ C&I portfolio

» Quarterly observations from 

2004Q3 to 2014Q4

» Segment and portfolio Loss 

Rates are calculated based on 

loan balance weights
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» Model lifetime loss rate or quarterly/annual loss rates as a function of loan/pool characteristics as 

well as macroeconomic scenarios 

𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑒 = 𝑓(𝑡𝑇𝑚, 𝐶𝑆𝐴𝑂, 𝑙𝑜𝑎𝑛𝑠𝑖𝑧𝑒, 𝑠𝑒𝑐𝑡𝑜𝑟, 𝑟𝑎𝑡𝑖𝑛𝑔, 𝐵𝑎𝑎 𝑌𝑖𝑒𝑙𝑑, 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡)

– Time to maturity (𝑡𝑇𝑚)= time between as-of date and contractual maturity date

– Credit spread at origination (𝐶𝑆𝐴𝑂, vintage effect) = loan interest rate at origination – benchmark rate

– Loan size = Log10(balance or commitment at origination) 

– Sector = {agriculture, health care, transportation…}

– Reporting date credit state = internal or regulatory rating

– US unemployment rate =  change in unemployment rate in the next year

– US Baa yield = average Baa yield in the next year

» May still consider Q-factors for additional adjustments for current and future environments that are 

not captured by the quantitative models

Loss Rate Modeling Based on Industry Group Data
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Incorporating Bank’s Loss Experience (I)
Example One

» Bank A only has segment level quarterly net charge off rate. Its 10-year average NCO rate is 45% 

higher than the Data Alliance contributing banks

» A simple multiplier of 1.45 is applied to the model. Different look-back periods can be used to 

determine the multiplier 
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Incorporating Bank’s Loss Experience (II)
Example Two

» Bank B has loan level historical data on 

payments and losses that are needed for 

lifetime loss rate calculation

» Different level of calibration can be applied 

by examining loan portfolio loss history 

and characteristics, relative to industry 

data

» An examination of Bank B’s portfolio 

shows that the loan size profile of the 

portfolio differs significantly from the 

industry peers

» The following slide shows two approaches 

for adjustments. More granular adjustment 

could be further applied

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

2004Q2 2006Q2 2008Q2 2010Q2 2012Q2 2014Q2

Lifetime Loss Rate Comparison

Data Alliance Banks Bank B



Leveraging Bank Internal Data and Industry Group Data for CECL Modelling,  April 24, 2018 11

Incorporating Bank’s Loss Experience (III)
Example Two (Continued)

Approach 1: Adjust model sensitivity to loan 

size
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Approach 2: Adjust the model sensitivity to 

both loan balance and economic variables.  
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CRE Portfolios1.b
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Fulfill CECL Requirements for CRE Loans

» Historical experience: Credit loss estimation based historically observed relationship between 

realized defaults/losses and CRE market cycles

» Current conditions: Current conditions on market, property, and loan

» Reasonable and supportable forecasts: A reasonable forward-looking view into the forecastable 

future, but no need to go overboard, e.g. 30-year forecast on CRE market condition is likely not 

supportable
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Historical CRE Loss Experience Is Correlated with 

Loan Characteristics

» CRE loan performance depends critically 

on origination vintage

» Origination LTV is a major risk driver for 

CRE loans

Based on CMM development dataset Based on CMM development dataset
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CRE Loss Is Also Driven By Macroeconomic and 

Market Conditions
» Historical CRE loss is closely tied to historical macroeconomic and CRE market trends

» A reliable CRE loss estimate depends on reasonable and supportable forecasts of future 

economic and CRE market conditions
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CRE Loss Rate Model Combines Industry Data 

with Bank Experience
» Model specification: 𝐸𝐿 = 𝑓 𝐿𝑜𝑎𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑠,𝑀𝑎𝑐𝑟𝑜 𝐹𝑎𝑐𝑡𝑜𝑟𝑠,𝑀𝑎𝑟𝑘𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑠

• Vintage

• Property Type

• Property Status

• GDP

• Unemployment

• Interest Rate

• CRE Price Index

• Market Vacancy

• Market Rent

» Final loss estimate can be calibrated to individual 

bank experience based on call reports

Multiplier = 0.82

» Alternatively, it can be calibrated to historical loss 

rate for banks with sufficient historical loss data

Multiplier = 0.85
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CRE Loss Rate Forecast: An Example
» Suppose that a bank always originates CRE loans at 50% or 60% LTV

» Currently, 20% of its CRE loans were originated in 2014 and the rest were originated after 2014

» Historically, its CRE charge-off rate is 10% lower than that of its peers on average

Loss Rate

Year

LTV = 60%

LTV = 50%

Loss Rate

Year

LTV = 60%

LTV = 50%

Loss Rate

Year

Weighted Average

Final Forecast

2014 Vintage Post-2014 Vintage
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0.9%



2
From Internal 

Rating to CECL 

Impairment
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What is the Rating to PD Convertor?

EDFs by

Rating

Country

adjustment

Sector

adjustment

Point in 
Time 
PDs

• Use the public firm EDF database to estimate the 

typical EDF given the rating

• Adjust for sector and country trends

• Use the EDF term structure to generate a Point-in-

Time PD term structure

• Can be applied to a financial institution’s internal 

rating
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Ratings Converted into a “Point-in-Time 1-year 

PD” for a Country Sector Pair
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Scenario Conditioning Through GCorr Macro

U.S. Country 
Credit Factor

Technology Sector
Macro Factor

Conditional 
PD, LGD

20% DJIA drop

GCorr 
Macro 

Correlations

Conditional 
Credit 

Migration

Input PD, 
US Tech 

Firm

Example – U.S. Tech firm 

Multiple 
Scenarios

Allowance
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Scenarios for Macroeconomic Variables
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Scenarios for Macroeconomic Variables
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Example Results
» Loan extended to a US Furniture and Appliances firm

– 5.5 years maturity, Ba2 Rated

– Moody’s ECCA Scenarios
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Consistent CRE Model Framework for Loss Rate 

and Rating-Based Allowance

» Model specification: 𝐸𝐿∗ = 𝑓 𝐿𝑜𝑎𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑠,𝑀𝑎𝑐𝑟𝑜 𝐹𝑎𝑐𝑡𝑜𝑟𝑠,𝑀𝑎𝑟𝑘𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑠

• Vintage

• Property Type

• Property Status

• GDP

• Unemployment

• Interest Rate

• CRE Price Index

• Market Vacancy

• Market Rent

Loan Rating
Local Market 

Condition

* The dependent variable can also be PD or LGD.



3 Summary and 

Discussion
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Summary and Discussion

» Institutions often have limited data in loan payment history, default, charge off 

and recovery

» Industry data has much richer and more granular coverage, and can be 

leveraged to capture the sensitivity of CECL impairments to various risk drivers

» It is desirable to adapt models built from industry/peer group data to a bank’s own 

experience

» We have discussed ideas and examples in incorporating both bank internal data 

and industry data for modeling CECL impairments of C&I and CRE portfolios


