
Systemic Risk Monitor 1.0:  
A Network Approach
Introduction 

In this paper, we introduce a new risk management tool focused on network connectivity 
between financial institutions. This tool will enable banks to better understand the 
counterparty risks faced by their counterparties and themselves. Additionally, our 
methodology cuts to the heart of the problem of systemic risk measurement and assessment.  
Our toolkit, which we call the Systemic Risk Monitor (SRM), will be indispensable for 
regulators seeking to fulfill their mandates to avoid banking crises. 

Given a network scope defined by geography and a minimum asset size threshold, SRM 
delivers a rich set of system-wide and bank-specific counterparty and systemic risk analytics.  
For individual banks, outputs include measures of systemic risk contributions and exposures 
and counterparty credit risk sensitivities, including some highly useful measures that are 
new to the literature.  We illustrate the framework with three case studies: U.S. financial 
institutions with a minimum size of $10 billion, Southeast Asian institutions with a minimum 
size of $1 billion, and a set of global mega-institutions.  In econometric exercises focused on 
U.S. institutions, we document strong Granger causal relationships between SRM outputs 
and the Comprehensive Capital Analysis and Review variables used to formulate regulatory 
stress-test scenarios.  In the cross section of U.S. institutions, SRM measures add significant 
forecasting power for future spikes in default probabilities during the Global Financial Crisis.
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Systemic Risk Monitor 1.0:  
A Network Approach
BY TONY HUGHES AND SAMUEL W. MALONE

In this paper, we introduce a compre-
hensive set of tools designed to address the 
issue of network connectivity in the global 
financial sector. On a very basic level, our 
toolkit considers the transmission of shocks 
between institutions using accumulated 
financial market and balance sheet data. 
Employing this information, financial insti-
tutions will be better able to visualize and 
quantify risks associated with their exposures 
to various counterparties and, for the first 
time, will be able to quantify their coun-
terparties’ counterparty risks using widely 
available information. 

In many ways, the concept of network 
connectivity is synonymous with that of 
systemic financial risk. Such risks are mani-
fested when shocks to individual banks are 
transmitted to other sectors of the financial 

industry and the economy more broadly. 
In designing stress-test methodologies and 
other analytical tools to quantify systemic 
risk and safeguard the banking system, regu-
lators must include measures of network 
connectivity as a central plank. Our meth-
odology allows global or cross-country sys-
temic risks to be considered as well as con-
nectivity within specific jurisdictions. In that 
way, regulators can use our tool to identify 
systemically important institutions under 
their watch, find network-specific vulner-
abilities, and locate conduits through which 
international shocks may be transmitted to 
their locale. 

While the use case for regulators is 
compelling, our primary goal in developing 
this product is to help financial institutions 
manage risk more effectively. Ideally, stress-

testing protocols will develop to the point 
where good stress testers gain a competitive 
advantage in the banking marketplace over 
bad stress testers. If this occurs, financial 
companies will adopt stress-testing tools 
voluntarily in their risk assessment procedures 
without the need for regulatory imposition. 
This ideal has guided our development of this 
toolkit. Though one can easily imagine regula-
tors forcing banks to assess the network con-
nectivity of their counterparties, our aim is to 
build a product that banks find indispensable 
in the operation of their businesses. In a world 
where bailouts are either uncertain or nonex-
istent, competitive advantages should accrue 
to institutions with a keen understanding of 
the network and their place therein. Our tool 
is designed to provide deep insight into the 
nature of these networks. 

Section 1: Background discussion

Systemic risk is the most important 
problem in banking and finance. Despite 
this, financial institutions typically have 
no formal quantitative system in place 
for tracking the phenomenon or measur-
ing their exposure or contribution to it. 
Although a bank can, with some diffi-
culty, quantify its exposures to its various 
counterparties, it cannot easily gauge its 
counterparties’ levels of exposure to third 
parties. If a bank is to take a holistic view of 
counterparty risk, these second- and high-
er-order relationships must be considered. 

On their side, the Federal Reserve and 
other government regulatory agencies 

around the world take a conservative ap-
proach to capital adequacy, in part because 
they, too, do not have a standardized, formal 
system for quantifying systemic risk. As-
set size is clearly an important component 
of systemic importance, but it is not the 
only component. Following recent guid-
ance by regulators around the globe, issues 
such as an institution’s leverage, geographic 
footprint, interconnectedness, complexity, 
and the degree of substitutability of opera-
tions also matter a great deal. In practice, 
however, regulators focus heavily on the 
use of financial institutions’ book asset 
values as a proxy for their systemic impor-

tance, in part because book asset values are 
easily obtainable.

In contrast, measuring some other di-
mensions of systemic importance such as 
an institution’s interconnectedness or the 
complexity of its operations is difficult. If 
the book size of an institution’s assets were 
perfectly, or even very highly, correlated with 
these other dimensions of systemic impor-
tance, then measuring the latter would be 
unnecessary. Unfortunately, the empirical 
evidence we present in this paper suggests 
that, at least in the case of interconnect-
edness, this is not the case. Correlations 
between firm size and measures of market-
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implied interconnectedness to other firms 
in the financial network are modest, even in 
times of significant market stress. Thus, it is 
necessary to track explicit quantitative mea-
sures of interconnectedness, since knowing 
institutional size alone is insufficient for un-
derstanding the nature of linkages between 
that firm and others in the system. Further-
more, although it is true that large firms 
typically have many counterparties and act 
as hubs for flows of capital through the sys-
tem, they do not always drive the default risk 
of other financial institutions in the system. 
The tools we describe in this paper, which 
make up the Systemic Risk Monitor 1.0, are 
designed to provide reliable, market-implied 
metrics indicating which institutions do drive 
the default risk of other firms in the system 
as well as several key dimensions of systemic 
risk that arise from such interactions.

Our conversations with banks suggest 
that systemic risk tools are likely to be 
more widely adopted if they tie in directly 
to the credit risk and counterparty risk 
monitoring activities that banks already 
perform. Widespread adoption and use of 
such monitoring tools with carefully vali-
dated systemic risk properties would clearly 
serve the interests of regulators. Ironically, 
inconsistent feedback to financial institu-
tions by regulators regarding best practices 
in stress-testing remains a nontrivial im-
pediment to the adoption of next genera-
tion stress-testing tools, including those 
which may hold independent interest for 
the risk management function of banks. We 
hope that, by offering tools useful for both 
enhanced counterparty risk surveillance as 
well as for systemic risk monitoring, we can 
help banks and regulators more effectively 
achieve their respective mandates, as well 
as coordinate more effectively on the use 
of tools that are conducive to enhanced 
financial stability. 

In this paper, we define systemic risk as 
the potential for a shock, endogenous or 
exogenous to the financial system, to cause 
broad-based financial system failure while 
inflicting collateral damage on other eco-
nomic sectors. Since the Global Financial 
Crisis and the sovereign debt crisis in Europe, 
stress-testing has become one of the main 

techniques for assessing the robustness of 
individual financial institutions and the fi-
nancial system as a whole. Little emphasis 
has been placed on formal measurement 
of systemic vulnerabilities as an active part 
of stress-testing, even though it is officially 
part of stress-testing mandates such as the 
Federal Reserve’s Comprehensive Capital 
Analysis and Review. This is not for a lack of 
core systemic risk research. Parallel to the 
development of stress-testing regimes, the 
academic literature on systemic risk mea-
sures has flourished (see Bisias et al., 2012 
and Gray and Malone, 2012 for discussions of 
the leading systemic risk measures). Rather, 
we view the lack of widespread adoption of 
systemic risk analytics by financial institu-
tions as the result of three temporary, but 
surmountable, barriers: 

»» Given the proliferation of systemic 
risk measures and inconsistent guid-
ance by regulators, it is unclear which 
metrics risk managers should invest 
valuable resources in to operationalize 
and monitor in real time. 

»» Financial institutions do not under-
stand how systemic risk analytics 
relate to their day-to-day risk man-
agement practices in terms of the 
risk and balance sheet variables they 
routinely monitor.

»» It is still unclear empirically how system-
ic risk analytics relate to the macroeco-
nomic variables used to operationalize 
the stress-testing scenarios issued by 
regulatory authorities such as the Fed. 

The SRM toolkit that we describe in this 
paper is a solution for surmounting each of 
these three barriers. Our approach draws 
upon two strands of the academic litera-
ture on systemic risk: those that focus on 
structural credit risk models as the basis for 
systemic risk modeling (Gray and Malone, 
2008; Gray, Jobst, and Malone, 2010; and 
Gray and Malone, 2012), and those that 
focus on network models as the basis for 
quantifying systemic risk (Billio et al., 2012; 
Merton et al., 2013). The structural credit 
risk model approach is often referred to as 
contingent claims analysis, or CCA-based ap-

proach to systemic risk, and that is how we 
will refer to it in this paper. Our work could 
be characterized as a “network CCA” ap-
proach, because it uses CCA inputs but links 
them together using network technology.

With respect to the first hurdle stated 
above, grounding our systemic risk suite in 
credit risk analytic concepts such as default 
probabilities, asset volatilities and leverage 
allows us to harness the power and versa-
tility of Moody’s proprietary CreditEdge 
database, which provides Expected Default 
Frequency metrics for publicly traded com-
panies around the world. An obvious benefit 
of this approach is lowering the cost of 
adoption for existing CreditEdge customers. 
Further, both the CCA-based and network 
approaches to systemic risk drive thinking on 
the topic at major international institutions 
and regulatory bodies. Examples of the influ-
ence of these strands of thought include: 
contributions to country work and Financial 
Sector Assessment Program reports at the 
International Monetary Fund1; research by 
the Office of Financial Research in the U.S. 
Treasury Department2, as well as research 
outputs of the Bank of International Settle-
ments3; and emphasis by the Bank of Eng-
land4 on such approaches. In a recent speech, 
Fed Chair Janet Yellen emphasized the impor-
tance of research on interconnectedness and 
systemic risk for drawing the appropriate les-
sons and policy implications from the events 
of the Global Financial Crisis (Yellen, 2013). 

More specific language from Fed regula-
tory communications suggests the utility 
of a network approach in particular. For the 
too-big-to-fail financial institutions subject 
to the Large Institution Supervision Coordi-

1	 See Jobst and Gray (2013) and IMF (2011) for example 
policy applications of the Systemic CCA approach at the 
IMF.

2	 The Bisias et al. (2012) survey, a joint OFR-MIT collabora-
tion, is one of many examples of research contributions by 
the OFR that emphasize CCA-based or network-based ap-
proaches to systemic risk.

3	 For example, Huang, Zhou and Zhu (2010) compute 
systemic risk measures using publicly available data for 
19 bank holding companies using methods described in 
Huang, Zhou and Zhu (2009), whereas a more recent Bank 
for International Settlements working paper by Blasques, 
Bräuning and van Lelyveld (2015) presents a dynamic net-
work model of the unsecured interbank lending market.

4	 The paper by Gai, Haldane, and Kapadia (2011) uses a 
network approach to analyzing vulnerabilities in interbank 
lending networks. 
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nating Committee framework, as well as the 
large domestic and foreign banking organiza-
tions with $50 billion or greater in assets, 
the Fed issued guidance in December 2012 
stating that it would henceforth employ a 
variety of macroprudential supervisory ap-
proaches, including:

“Using comparative and aggregate 
analysis to monitor industry prac-
tices, common investment or funding 
strategies, changes in degree or form 
of financial interconnectedness, or 
other developments with implications 
for financial stability.” (Board of Gov-
ernors of the Federal Reserve System, 
December 17, 2012, emphasis ours.) 

Further, pursuant to this guidance, the 
Fed and the FDIC now require financial firms 
to have resolution plans, or “living wills,” 
which they jointly review relative to super-
visory requirements. Two points of the Fed’s 
guidance with respect to resolution plans 
stand out and make clear the potential util-
ity of a framework that combines network 
analysis with credit risk in a dynamic setting. 
The first point relates to the 

“Analysis of potential impediments 
to resolution, and actions to make 
the firm more resolvable or otherwise 
reduce its complexity and intercon-
nectivity.” (ibid.)

And the second is the 

“Analysis of whether the failure of a 
major counterparty would likely result 
in the material financial distress or 
failure of the firm.” (ibid.)

By modeling credit risk spillovers directly, 
the SRM provides tools that would be use-
ful for addressing the above two require-
ments for resolution planning on the part of 
large banking organizations in the U.S. and 
potentially abroad. 

With respect to adoption hurdle (2), we 
believe that a systemic risk framework based 
on credit risk concepts dovetails naturally 
with the core credit risk and counterparty 

risk monitoring activities already undertaken 
by financial institutions. The EDF networks 
that we construct help banks answer ques-
tions such as:

»» How will my default risk respond to 
a credit event at another institution 
in the network with whom I have few 
direct financial ties?

»» Who are my three biggest counterpar-
ties’ main counterparties?

»»  Am I nearer to the core or the periph-
ery of the financial network?

»» What is the average probability of de-
fault for the most connected institu-
tions in the financial system today?  

We believe that a proactive risk man-
agement function will find such questions 
worth answering even in the absence of 
regulatory requirements to do so, although 
the potential utility of such tools in light 
of recent regulatory guidance is clear. In 
Section 5, we show that the novel bank-
specific systemic risk measures we develop 
in Section 3 add additional forecasting 
power, after controlling for initial EDFs, for 
predicting high credit risk realizations of 
U.S. financial institutions during the worst 
period of the financial crisis (February 
2008-January 2009). 

To address barrier (3), we present ad-
ditional econometric results in Section 5 
demonstrating that, for the U.S. financial 
system, SRM analytics are related to nu-
merous CCAR variables via the existence 
of highly statistically significant Granger 
causal relationships. We show that time se-
ries SRM analytics compare favorably with 
the leading systemic risk measures from the 
literature studied by Giglio, Kelly and Pruitt 
(forthcoming), in terms of the prevalence 
of such relationships with CCAR variables. 
This finding holds both for Granger causal-
ity running from systemic risk measures to 
CCAR variables and Granger causality run-
ning in the other direction. 

The aforementioned findings, that bank-
specific SRM measures aid in forecasting 

future credit risk in a period of stress and 
that robust dynamic links exist between 
systemic risk analytics and CCAR variables, 
suggest that the proposal of Hughes and 
Malone (2015) to “put systemic stress 
into the stress-testing system” is indeed a 
feasible proposition. 

While the CCA and network approaches 
do not provide a comprehensive set of sys-
temic risk measures, they do provide what 
we believe is an effective set of tools to 
capture aspects of systemic risk that are 
of critical importance to banks and regula-
tors. When used in conjunction with other 
judiciously selected systemic risk measures, 
including measures related to equity volatil-
ity, credit spreads, and market leverage that 
perform well in the tests of Giglio, Kelly and 
Pruitt (forthcoming), we believe that the 
network CCA approach underlying the SRM 
has the potential to address several of the 
directives in Fed regulatory guidance issued 
since the enactment of the Dodd-Frank Wall 
Street Reform and Consumer Protection Act 
into law. 

The rest of this paper is organized as 
follows. Section 2 discusses the methods 
behind SRM. Section 3 discusses the core 
inventory of systemic risk analytics pro-
duced by SRM. Section 4 presents primar-
ily graphical results for three case studies: 
large institutions in the U.S. financial sector 
(“U.S.”), ASEAN-5 financial institutions 
with a minimum of $1 billion in book assets 
(“ASEAN-5”), and global financial institu-
tions with at least $100 billion in book 
assets (“Global Megabanks”). Section 5 
presents evidence on the predictive value 
of SRM analytics for credit events during 
the Global Financial Crisis, as well as on 
Granger causal relationships between SRM 
measures and CCAR variables for the U.S. 
Section 6 uses SRM to reveal more granular 
insights on credit risk spillovers between 
selected pairs of financial institutions in the 
Global Megabanks network. This provides 
one example of how SRM may be used as a 
counterparty risk surveillance tool. Section 
7 concludes.
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Section 2: Terminology and methods

The primary goal of SRM is to assess 
the prevalence and magnitude of dynamic 
spillovers in default probabilities, asset vola-
tilities, or leverage ratios across financial 
institutions in the user-defined network. 
Network models use one variable at a time. 
Thus, we may refer to the EDF network, the 
volatility network, or the leverage network, 
depending on which of these variables forms 
the basis of analysis. The primary variable of 
interest in this article will be the EDF mea-
sure, which is an estimate of the real world 
default probability of the financial institution 
at the one-year horizon. In the CreditEdge 
database, the EDF™ measure of real-world 
default probability is coded as “edf”, asset 
volatility is coded as “CSG”, and our measure 
of market leverage is computed as default-
point/AVL, where “defaultpoint” is the Cred-
itEdge reported value for the default point 
and “AVL” is the reported estimate of the 
market value of assets, both measured in lo-
cal currency. In CreditEdge, the default point 
refers to the adjusted net present value of 
the firm’s promised debt payments or, more 
precisely, to the level of assets at which it is 
assumed the firm will incur a default. All of 
our examples use EDF9 version data. 

The default point, as described by Crosbie 
and Bohn (2003), is the market value of as-
sets at which the firm is assumed to default. 
Empirically, they note, this point lies between 
the book value of short-term liabilities and 
the book value of total liabilities. As described 
in Gray and Malone (2008), the default point 
is sometimes approximated as the value of 
short-term liabilities plus one-half of the value 
of long-term liabilities, where future bond 
cash flows are discounted at the risk-free rate. 

In the Merton (1974) model, which 
forms the basis of the structural credit risk 
modeling literature, the risk-neutral default 
probability is a function of the firm’s asset 
volatility and leverage. In this setup, given 
the firm-market asset return correlation, 
the market price of risk, and the firm’s risk-

neutral default probability, it is straightfor-
ward to calculate the real-world probability 
of default for a given time horizon (Dwyer 
et al., 2010). In the setup where firm assets 
are assumed to follow a geometric Brownian 
motion whose drift equals the risk-free rate, 
the risk-neutral probability of default equals 
the cumulative normal distribution function 
evaluated at minus one times the distance-
to-default measure. 

Rather than translate the risk-neutral 
probability of default to the physical mea-
sure via use of the market price of risk, the 
CreditEdge methodology uses extensive his-
torical data on firm defaults to map the dis-
tance-to-default directly to the EDF measure 
of real-world default probability via lookup 
tables (Crosbie and Bohn, 2003).  

SRM outputs, which we will describe in 
detail in Section 3, take the form of bank- 
and industry-level measures of the extent to 
which statistically significant Granger causal 
connections can be identified between 
pairs of banks. The basic model will involve 
estimating bivariate vector auto-regression 
models of the form

𝑌𝑌𝑡𝑡 = 𝑎𝑎1 + �𝑏𝑏𝑗𝑗1𝑌𝑌𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1

+ �𝑐𝑐𝑗𝑗1
𝑝𝑝

𝑗𝑗=1

𝑋𝑋𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡1 

𝑋𝑋𝑡𝑡 = 𝑎𝑎2 + �𝑏𝑏𝑗𝑗2𝑌𝑌𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1

+ �𝑐𝑐𝑗𝑗2
𝑝𝑝

𝑗𝑗=1

𝑋𝑋𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡2 

where Yt and Xt contain the variable of inter-
est (EDF, volatility or leverage) for a given 
pair of banks at time t and the off-diagonal 
coefficients (the 𝑐𝑐𝑗𝑗1 s and 𝑏𝑏𝑗𝑗2 s) measure the 
extent to which lagged observed outcomes 
for one bank are partially correlated with the 
outcomes for the other bank. If the relevant 
F-test of the 𝑐𝑐𝑗𝑗1 s is significant at the 5% 
level, we will say that X Granger-causes Y, 
whereas if the relevant F-test of the 𝑏𝑏𝑗𝑗2 s is 
significant at the 5% level, we will say that Y 
Granger-causes X. 

If the estimated one-month lag coef-
ficient in an equation is significant and posi-
tively signed, we say that a “forcing” Granger 
causal link exists. The implication here is that 
positive shocks to the default probability of 
one bank increase the default probability 
of the other bank in the future. This is one 
important channel through which systemic 
risk operates: The presence of significant 
credit risk spillovers creates the possibility for 
damaging credit risk cascades to occur, and 
analyses that focus on traditional measures 
of counterparty or credit risk exposures may 
miss this possibility. 

Conversely, negative b and c coefficients 
in the VAR equations signify the existence 
of “damping” Granger causal connections. 
In such damping connections, one bank ap-
pears to benefit, via a lower future default 
probability, from the misfortune that befalls 
its competitor in the form of a positive shock 
to the competitor’s current EDF level. This 
latter type of linkage, if highly prevalent, can 
act as an antidote to the normally insidious 
forms of systemic risk. 

In general, the existence of a forcing or 
damping relationship of one bank’s EDF on 
another bank’s EDF can be established by ob-
serving the sign and statistical significance of 
the cumulative impulse-response coefficient 
at the horizon of interest. Since the impulse-
response coefficient at the one-month time 
horizon is determined by the coefficient on 
the one-month lag of the impulse variable, 
we use the latter to determine the existence 
of forcing and damping relationships at the 
one-month horizon. We focus on the one-
month horizon because we find that forcing 
relationships at this horizon are important 
empirically, but using another horizon would 
simply require using the cumulated impulse-
response function coefficient in place of the 
one-month lag coefficient.

We will have more to say about forcing 
and damping relationships in our analysis of 
the U.S. financial sector in Section 4.
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Section 3: Outputs

The key outputs of the framework fall 
into three categories. The first consists of 
classic network measures such as the degree 
of Granger causality; the In, Out, and In.plus.
Out measures; and the Closeness measure 
defined in Billio et al. (2012). We provide 
equations for each of these measures below. 
Note that the DGC measure we report is 
different from that of Billio et al. (2012), as 
the latter is based on equity returns, whereas 
our setup focuses on the EDF measure of the 
probability of default.

The second category of measures consists 
of novel variations on classic network mea-
sures such as Out.plus, Out.minus, In.plus, 
In.minus and Net.degree.of.forcing. These 
measures are, to our knowledge, new to 
the literature.

The third category of measures involves 
weighted average CreditEdge variables, in 
particular weighted average EDF, volatility, 
and leverage measures, where weights are 
related to a measure of asset size, or to a 
measure of systemic influence. We report 
cross-sectional correlation measures, which 
illustrate how the relationship between 
selected pairs of measures in the cross sec-
tion of banks varies over time. The two 
correlations we focus on are the EDF-Out 
rank correlation and the Volatility-Leverage 
rank correlation. 

We also compute the time-varying 
beta sensitivities of individual bank EDFs 
to the weighted average EDF measures 
via the use of rolling regressions. We now 
elaborate on each of these categories 
of measures.

Classic network measures:  
DGC, In, Out, In.plus.Out, Closeness

To determine the strength of dynamic 
linkages between institutions over time, 
we compute the degree of Granger causal-
ity measure described in Billio et al. (2012) 
for each month of out-of-sample data. The 
procedure we use to compute the DGC 
measure, and the damping, forcing, and 
net forcing variations of that measure we 
will describe momentarily, is as follows. 

First, for the set of N(t) financial institu-
tions in the system that exist and have 
sufficient data at a given point in time, we 
run the �𝑁𝑁(𝑡𝑡)

2 �  bivariate vector autoregres-
sion models involving each unique pair of 
institutions, using a two-month lag length, 
p=2, and a 60-month rolling window of 
EDF data. We compute the adjacency ma-
trix A(t), defined as [𝐴𝐴(𝑡𝑡)]𝑖𝑖𝑖𝑖 = 1  if institu-
tion i Granger-causes institution j, and 
[𝐴𝐴(𝑡𝑡)]𝑖𝑖𝑖𝑖 = 0  otherwise. Granger causality 
of institution j by institution i occurs when 
the relevant F-test of the coefficients of 
the first and second lags of institution i’s 
EDF in the equation for institution j’s EDF 
is significant at the 5% level. The measure 
DGC(t) is computed as 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)(𝑁𝑁(𝑡𝑡) − 1) 1�⃑ 𝑇𝑇𝐴𝐴(𝑡𝑡) 1�⃑  

where 1�⃑ 𝑇𝑇𝐴𝐴(𝑡𝑡)1�⃑   is the sum of the elements, 
or total number of active connections in 
the Granger causality network, at time t, 
and 𝑁𝑁(𝑡𝑡)(𝑁𝑁(𝑡𝑡) − 1)  is the total number of 
possible connections that could be active 
in the network at time t. Thus, the DGC 
measure lies between zero and 1 and gives 
the fraction of possible Granger causal 
linkages that are active in the system at a 
given time. 

The Out measure captures the extent 
of downstream linkages for a given institu-
tion and is equal to the fraction of the other 
institutions in the network Granger-caused 
by the institution in question. The measure 
Out(i,t) for institution i at time t is com-
puted as

𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) − 1 [𝐴𝐴(𝑡𝑡)1�⃑ ]𝑖𝑖  

The In measure captures the extent of 
upstream linkages and is equal to the frac-
tion of other institutions in the network that 
Granger-cause the institution of interest. The 
measure In(i,t) for institution i at time t is 
computed as

𝐼𝐼𝐼𝐼(𝑖𝑖, 𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) − 1 [1�⃑ 𝑇𝑇𝐴𝐴(𝑡𝑡)]𝑖𝑖  

The In.plus.Out measure simply av-
erages the In and Out measures for a 
particular institution:

𝐼𝐼𝐼𝐼. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑡𝑡) =
𝐼𝐼𝐼𝐼(𝑖𝑖, 𝑡𝑡) + 𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑡𝑡)

2  

The In.plus.Out measure is interpreted 
as the fraction of all possible upstream or 
downstream connections that are active for 
the institution in question.

The Closeness measure for an institu-
tion is the average length of the shortest 
path from that institution to each of the 
other institutions in the network. To com-
pute Closeness, we first define the notion of 
weakly causal C-connection: node i is weakly 
causal C-connected to j if there exists a path 
of length C between i and j in the form of a 
sequence of nodes 𝑘𝑘1, … , 𝑘𝑘𝐶𝐶−1  such that 

(𝑖𝑖
𝐶𝐶
→ 𝑗𝑗) ≡ [𝐴𝐴(𝑡𝑡)]𝑖𝑖𝑘𝑘1 × [𝐴𝐴(𝑡𝑡)]𝑘𝑘1𝑘𝑘2 × ⋯

× [𝐴𝐴(𝑡𝑡)]𝑘𝑘𝐶𝐶−1𝑗𝑗 = 1 

Define the matrix C(t) by:

𝐶𝐶𝑖𝑖𝑖𝑖 ≡ min
𝐶𝐶
�𝐶𝐶 ∈ [1,𝑁𝑁(𝑡𝑡) − 1]: �𝑖𝑖

𝐶𝐶
→ 𝑗𝑗� = 1�, 

for 𝑖𝑖 ≠ 𝑗𝑗,   where we set 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑁𝑁(𝑡𝑡) − 1  if 
�𝑖𝑖

𝐶𝐶
→ 𝑗𝑗� = 0  for all 𝐶𝐶 ∈ [1,𝑁𝑁(𝑡𝑡) − 1] . By con-

vention we set 𝐶𝐶𝑖𝑖𝑖𝑖 = 0  for all i. 
Then the Closeness measure for institu-

tion i at time t is defined as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑡𝑡) ≡
1

𝑁𝑁(𝑡𝑡) − 1 [𝐶𝐶(𝑡𝑡)1�⃑ ]𝑖𝑖   

There are other potential conventional 
network measures we can compute given 
the adjacency matrix of a network graph 
such as betweenness, transitivity, eigenvec-
tor centrality and reciprocity, but we opt to 
defer discussion of these and other network 
analytics such as formal analysis of clusters 
and the similarity between any pair of bank 
nodes to later work. 

Novel network measures:  
Forcing and damping Granger causality

We now introduce measures that are 
novel to the literature on financial networks 
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that we find to be especially useful in pre-
dicting credit events during periods of finan-
cial crisis. We construct our measures using 
information on the coefficient of the first 
lag of the other-bank endogenous variable 
in our bivariate VAR models from Section 2. 
In principle, we could focus on the impulse-
response function at any horizon of inter-
est, but we choose to focus only on the first 
lag coefficients (or equivalently, the one-
month-ahead impulse-response coefficients) 
because the measures derived from these 
demonstrate very good empirical properties 
in the tests we present in Section 5. 

In analogy to an oscillator in physics, the 
relationships between any pair of financial 
institutions in the network may be forcing 
or damping in nature. Forcing relation-
ships are characterized by positively signed 
coefficients for the effect of institution X 
on institution Y in the next month. Such 
relationships propagate positive shocks to 
the endogenous variable of one institution 
downstream to all the other institutions 
that it affects. Conversely, damping relation-
ships are characterized by negatively signed 
coefficients for the effect of institution X on 
institution Y in the next month. Damping 
relationships tend to reduce the downstream 
effect of the initial positive shock to an insti-
tution on the rest of the system. We find that 
most relationships are of the forcing kind, 
although the extent of both relationships 
goes up during crisis periods. Forcing- and 
damping-style measures can be constructed 
by specifying alternative definitions of the 
adjacency matrix that correspond to each 
concept, respectively. 

For forcing relationships, we use the 
𝐴𝐴+(𝑡𝑡)  matrix. Let the 𝐴𝐴+(𝑡𝑡)  matrix be 
defined as [𝐴𝐴+(𝑡𝑡)]𝑖𝑖𝑖𝑖 = 1  if the positive 
one-sided t-test of the one-month lag coef-
ficient for institution i in the model of insti-
tution j is significant at the 2.5% level, and 
[𝐴𝐴+(𝑡𝑡)]𝑖𝑖𝑖𝑖 = 0  otherwise. That is, 

[𝐴𝐴+(𝑡𝑡)]𝑖𝑖𝑖𝑖 = 1 iff 𝑐𝑐1
1/𝑠𝑠𝑠𝑠(𝑐𝑐1

1)
> 𝑡𝑡𝑝𝑝=.975,𝑑𝑑𝑑𝑑=𝑊𝑊−2𝑝𝑝−1

∗  

in the model of bank j=Y on bank i=X, 
where W is the size of the rolling window 
used for estimation. Analogously, for 

damping relationships we define the ma-
trix 𝐴𝐴−(𝑡𝑡)  as 

[𝐴𝐴−(𝑡𝑡)]𝑖𝑖𝑖𝑖 = 1 iff 𝑐𝑐1
1/𝑠𝑠𝑠𝑠(𝑐𝑐1

1)
< −𝑡𝑡𝑝𝑝=.975,𝑑𝑑𝑑𝑑=𝑊𝑊−2𝑝𝑝−1

∗  

in the model of institution j=Y on institution 
i=X. Having defined the 𝐴𝐴+(𝑡𝑡)  and 𝐴𝐴−(𝑡𝑡)  
adjacency matrices, we may compute the 
following institution-specific, time-varying 
measures that serve as analogues to the Out 
and In measures encountered above:

Out.plus:

𝑂𝑂𝑂𝑂𝑂𝑂. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖, 𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) − 1 [𝐴𝐴+(𝑡𝑡)1�⃑ ]𝑖𝑖  

Out.minus:

𝑂𝑂𝑂𝑂𝑂𝑂.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖, 𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) − 1 [𝐴𝐴−(𝑡𝑡)1�⃑ ]𝑖𝑖  

In.plus:

𝐼𝐼𝐼𝐼. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖, 𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) − 1 [1�⃑ 𝑇𝑇𝐴𝐴+(𝑡𝑡)]𝑖𝑖  

In.minus:

𝐼𝐼𝐼𝐼.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖, 𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) − 1 [1�⃑ 𝑇𝑇𝐴𝐴−(𝑡𝑡)]𝑖𝑖  

Additionally, analogues to the DGC time 
series can be computed based on forcing and 
damping relationships, respectively:

DGC.forcing: 

𝐷𝐷𝐷𝐷𝐷𝐷. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡)

=
1

𝑁𝑁(𝑡𝑡)(𝑁𝑁(𝑡𝑡) − 1) 1�⃑ 𝑇𝑇𝐴𝐴+(𝑡𝑡) 1�⃑  

DGC.damping:

𝐷𝐷𝐷𝐷𝐷𝐷.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)

=
1

𝑁𝑁(𝑡𝑡)(𝑁𝑁(𝑡𝑡) − 1) 1�⃑ 𝑇𝑇𝐴𝐴−(𝑡𝑡) 1�⃑  

The difference between these two mea-
sures gives the net degree of forcing relation-
ships in the network at a given time.

Net.degree.of.forcing:

Net.Degree.of.Forcing(t)= 
DGC.forcing(t)-DGC.damping(t)

Weighted average measures, cross-
sectional correlations, and betas

We compute weighted average EDF, 
volatility, and leverage measures using size 
and systemic importance weights. These 
provide system-wide, time-varying measures 
of the EDF and its drivers. As an example, 
if BAusd(i,t) is the value of book assets for 
institution i at time t, then the size-weighted 
average EDF measure is computed as

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑡𝑡) =
∑ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑡𝑡) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑖𝑖, 𝑡𝑡)𝑁𝑁(𝑡𝑡)
𝑖𝑖=1

∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑖𝑖, 𝑡𝑡)𝑁𝑁(𝑡𝑡)
𝑖𝑖=1

  

where the weight for institution i is equal 
to the value of its book assets measured in 
U.S. dollars as a fraction of the sum total 
of book assets measured in U.S. dollars of 
all the institutions in the network at time t. 
The Out-weighted average EDF measure is 
computed as 

𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (𝑡𝑡) =
∑ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑡𝑡) 𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑡𝑡)𝑁𝑁(𝑡𝑡)
𝑖𝑖=1

∑ 𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑡𝑡)𝑁𝑁(𝑡𝑡)
𝑖𝑖=1

 

Equivalent weighted average measures 
for volatility and leverage are computed 
similarly. In Section 4, we display plots of 
size and systemic influence weighted aver-
age EDF, volatility, and leverage for different 
networks. Our systemic influence weighted 
average measure is defined as

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑡𝑡)

=
1
3 �𝐸𝐸𝐸𝐸𝐸𝐸

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (𝑡𝑡)

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡)
+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑡𝑡)� 

Here 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡)  is computed 
by replacing Out(i,t) with Out.plus(i,t) in 
the Out-weighted average EDF formula, 
and 𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑡𝑡)  is computed by 
replacing Out(i,t) with 1/Closeness(i,t) in 
the Out-weighted average EDF formula. The 
rationale behind the systemic influence-
weighted EDF index is to take advantage of 
information in three types of measures for 
systemic risk. The Out measure was shown 
to have predictive properties for banks in 
the Global Financial Crisis by Billio et al. 
(2012). We show in Section 5 that the Out.
plus measure appears to react more quickly 



MOODY’S ANALYTICS

7 	 June 2015	

prior to adverse events and have better pre-
dictive power than the Out measure in the 
samples we consider, and the inverse close-
ness weights incorporate information on 
another dimension of systemic risk, namely 
the average closeness to the rest of the in-
stitutions in the network. 

The primary cross-sectional correlations 
we track are the Spearman rank correlations 
between the EDF measure and the Out 
measure by bank, which we label EDF-Out.
spearman, and the Spearman rank correla-
tion between bank leverage and bank asset 
volatility, which we label Leverage-Vol.
spearman.5 The EDF-Out correlation tells 
us the extent to which default risk, mea-
sured by EDF, and systemic risk contribu-
tion, measured by Out, are aligned at a 
given point in time. When the correlation 
is positive, the interpretation is that firms 
that have higher credit risk are contribut-

5	 We also compute Pearson and Kendall correlations, but we 
do not report them here.

ing disproportionately to systemic risk in 
the network compared with low credit-risk 
firms. The Leverage-Vol.spearman mea-
sure, on the other hand, allows us to track 
the relationship between bank leverage 
and asset volatility in the cross section of 
banks. If, as in the setup of Adrian and Shin 
(2014), banks follow an exact value-at-risk 
rule, where financial intermediaries keep 
their book equity matched with their VaR at 
some given confidence level, we should find 
that increases in asset volatility that raise 
the VaR are met by decreases in book lever-
age on the part of the bank. If book leverage 
is positively correlated with market leverage 
in the cross section, then we should find 
a negative cross-sectional correlation be-
tween bank asset volatility and bank market 
leverage. This is indeed what we find in the 
data for all three networks we examine. The 
time variation in the cross-sectional correla-
tion between market leverage and volatility, 
however, is potentially informative about 
the state of the financial system. As the 

correlation becomes weaker (moves toward 
zero), we can infer that there is likely more 
dispersion in the equity VaRs of different 
banks in the cross section.

Finally, the SRM computes rolling time 
series (elasticity) betas of bank-specific risk 
measures such as the (log) EDF with respect 
to selected systemic risk measures such as 
the (log) Out-weighted average EDF of the 
system. As in the asset-pricing literature, 
beta sensitivities in the cross section can be 
used to sort institutions at a given date and 
future outcomes for each institution related 
to its beta sensitivity or beta sensitivity rank 
on an initial date of interest. We apply this 
approach to forecasting future credit risk 
events, modeled as exceedances of high 
(10%) EDF thresholds during the next 12 
months, for a cross section of U.S. banks in 
January 2008. Beta sensitivities have sub-
stantial forecasting power after controlling 
for initial EDFs. We report the results of this 
forecasting exercise for our leading bank-
specific measures in Section 5.  

Section 4: Case studies

We divide our empirical results into case 
studies and econometric validation of SRM 
metrics, with this section devoted to the case 
studies. For all of our empirical analyses, we 
begin with a master dataset of financial insti-
tutions (institutions with a Standard Indus-
trial Classification code between 6,000 and 
6,799) from around the world. The particular 
network of interest is then determined by 
specifying the geographical location(s) and 
minimum book asset thresholds of the insti-
tutions to be included. Our data are sourced 
entirely from CreditEdge, and therefore the 
only requirement for an institution to be 
included in our dataset is that it must have 
traded equity and public financial statements 
with which to calculate EDF measures. 

Although we can implement our method-
ology for all firms in the database globally, 
the three network-scopes we focus on are as 
follows: Dodd-Frank Act stress-testing-size 
financial institutions in the U.S. with book 
assets of $10 billion and above, ASEAN-5 
region institutions with book assets of $1 

billion and above, and the set of all global fi-
nancial institutions with book assets exceed-
ing $100 billion. The major crisis periods and 
events in all of these networks are the Asian 
crisis of 1997-1998, the Russian default and 
Long-Term Capital Management implosion 
in 1998, the bursting of the dot-com bubble 
in 2000, the Argentina default in late 2001, 
the Global Financial Crisis from 2007-2009, 
and the European sovereign debt crisis from 
late 2009-2012. Of all of these, the Asian 
crisis and the Global Financial Crisis stand 
out as particularly turbulent periods that had 
an outsize impact on global capital markets. 
The ASEAN-5 and U.S. network studies, re-
spectively, allow us to focus on the regions 
of origins for these crises. The Global Mega-
banks network study allows us to focus on 
the international set of financial institutions 
whose asset size almost automatically places 
them into the global systemically important 
financial institution category and assess the 
relative impact of different crisis events on 
the evolution of their systemic risk measures. 

4.1 Case Study: U.S.
Table 1 displays the top 15 CCAR-size 

U.S. financial firms—firms with book assets 
exceeding $50 billion—as ranked by their 
Out measure as of October 2014. Discover 
Financial Services Inc. and the Intercontinen-
tal Exchange are of particular note since they 
have very high Out quantiles as well as being 
large and possessing EDF values at the 42nd 
and 54th percentiles, respectively, among 
all EDFs of institutions in the network. By 
the same token, Genworth Financial Inc. 
draws attention because its Out, EDF and 
size quantiles are all greater than or equal to 
84%. When a moderate or high credit risk 
manifests itself in large, highly connected 
firms, it is a reasonable cause for increased 
scrutiny on the part of regulators, according 
to the guidance the Fed has offered to finan-
cial firms following the passage of Dodd-
Frank (see Board of Governors of the Federal 
Reserve System, December 17, 2012).

The institutions shown in Table 1 are pre-
screened by size. In the entire U.S. network 
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of institutions with $10 billion in assets and 
above, however, we find that as of October 
2014, the Spearman correlation between 
book asset value and the Out measure across 
institutions was a mere 0.02. In January 
2008, the correlation was also 0.02, and in 
January 2009, the correlation was 0.11. The 
correlations we obtain after replacing Out by 
Out.plus are nearly identical. Thus, book as-
set size and systemic influence do not appear 
to be strongly related in the cross section of 
firms, even in periods of significant market 
stress. We will see this result echoed in the 
case studies for Southeast Asia and the set 
of Global Megabanks. The robustness of this 
finding across time and geographic regions 

provides strong evidence that regulating 
SIFIs based on their size alone is likely to 
be a flawed approach with a low chance of 
avoiding a spike in systemic risk during future 
crisis periods.  

Chart 1 displays the weighted average 
EDF measures for the U.S. network over time. 
The two series shown are the size-weighted 
average EDF and the systemic influence-
weighted average EDF.

Using 1% and 2% EDF thresholds as 
warning signals, a history of credit risk in 
DFAST-size U.S. banks emerges. The size-
weighted average EDF barely breached the 
1% threshold in January 1991, in the sav-
ings and loan crisis, before falling. It again 

breached the 1% threshold in September 
2000, following a sequence of capital mar-
ket shocks that included the Asian crisis, 
LTCM’s implosion, the Russian default, and 
the bursting of the dot-com bubble. The 
size-weighted average EDF breached the 
2% threshold in September 2001 after the 
September 11 terrorist attacks and remained 
high until passing the 4% threshold in March 
2008, following the onset of the Global 
Financial Crisis. From there, it spiked until 
reaching its apex of 14.3% in February 2009, 
from which point it has continued to fall, 
albeit with a recent uptick in late 2014. The 
systemic influence-weighted average EDF 
tracks the size-weighted EDF until 2000, is 

Table 1: Top 15 CCAR-size U.S. Firms Ranked by Out Measure as of October 2014: U.S. Network*

Financial Institution
Out EDF Book Assets

Value Quantile Value (%) Quantile Value ($ mil) Quantile
Discover Financial Services Inc. 0.39 0.96 0.25 0.42  78,937 0.79
Chubb Corp. 0.37 0.95 0.18 0.21  51,440 0.72
Loews Corp. 0.36 0.93 0.11 0.05  82,894 0.80
Intercontinental Exchange 0.34 0.93 0.29 0.54  68,482 0.78
U.S. Bancorp 0.34 0.92 0.17 0.18  389,065 0.93
Northern Trust Corp. 0.32 0.91 0.23 0.36  105,761 0.83
BB&T Corp. 0.32 0.91 0.22 0.35  188,012 0.89
Allstate Corp. 0.31 0.90 0.16 0.16  110,233 0.84
Travelers Cos. Inc. 0.27 0.86 0.2 0.27  104,811 0.83
Genworth Financial Inc. 0.26 0.85 0.5 0.86  111,644 0.84
Annaly Capital Management 0.23 0.82 0.25 0.41  87,151 0.81
Protective Life Corp. 0.22 0.80 0.37 0.73  71,158 0.79
Cigna Corp. 0.21 0.78 0.16 0.15  55,929 0.74
Blackrock Inc. 0.20 0.78 0.54 0.88  231,693 0.90
UnitedHealth Group Inc. 0.20 0.77 0.11 0.06  85,466 0.80

*Ranking by Out value in U.S. network for the subset of institutions with book asset values exceeding $50 billion.
Source: Moody’s Analytics
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substantially less than the latter series during 
the Great Moderation from 2000-2005 and 
the post-crisis period from 2010-present, 
and closely tracks the size-weighted series 
during the 2006-2009 period that includes 
the Global Financial Crisis.

To put the preceding results in context, 
Chart 2 shows the DGC of the EDF network 
for the U.S. over time. The spike in the first 
period of the sample, from 1987 to the early 
1990s, corresponds with the savings and loan 
crisis in the U.S. and is very similar to the DGC 
for the Global Megabanks network during the 
same (and other) periods. Indeed, the remain-
ing spikes and plateaus of the DGC measure 
for the U.S. correspond to major domestic and 
international crises. There is a brief spike for 
the Exchange Rate Mechanism crisis of 1993, 
a spike corresponding to the Tequila crisis in 
1994, a major runup in the series from 1997-
2000 that corresponds with the multiple 
shocks that occurred during that period, and a 
historically unprecedented trough-to-peak in-
crease in the series from a nadir in early 2005 
to a historical high of 0.35 in March 2009. The 
final spike in the series corresponded to the 
Taper Tantrum in 2013, and the DGC has since 
fallen to very modest levels.  

Charts 3 and 4 display the evolution of 
weighted average leverage and asset volatil-
ity, respectively, in U.S. financial institutions 
over time. The measure of leverage we em-
ploy at the bank level is the default point di-
vided by the estimated market value of bank 
assets. Both concepts are sourced from Cred-
itEdge, as is the volatility measure, which 
captures the volatility of firm asset growth. 

From Chart 3, we see that both size-
weighted leverage and systemic influence-
weighted leverage peaked at the height 
of the financial crisis. Since that time, 
size-weighted leverage has remained quite 
high by historical standards, while systemic 
influence-weighted leverage has fallen to 
low levels. The main systemically weighted 
leverage peaks in the series occurred in the 
early 1990s after the S&L crisis and in 2000, 
following the bursting of the dot-com bubble 
and the events of the Asian crisis, the LTCM 
implosion, and the Russian default. 

Systemic influence-weighted average as-
set volatility, shown in Chart 4, is everywhere 
greater than size-weighted average asset vol-
atility. Institutions that contribute the most 
to systemic risk tend to have more volatile 
assets on average than large institutions. 
Subject to this rule, the two weighted-aver-
age volatility measures are highly correlated 
over time, with peaks occurring at roughly 
the same points in 
time with minor dif-
ferences in timing. 
The early 2000s 
and 2010 stand out 
as major historical 
peaks in bank asset 
volatility. The chief 
difference is that size-
weighted average 
volatility achieved its 
historical high in the 
early 2000s, whereas 
systemically im-
portant institutions 

achieved historically high volatility in 2010 
after the conclusion of the Global Financial 
Crisis. In general, as we will see in the other 
case studies, volatility tends to build up over 
time as crisis events unfold, and peaks in 
volatility lag salient crisis events, whereas 
leverage tends to spike around the time 
that crisis events occur as firms’ asset prices 
adjust more quickly than debt obligations in 
such situations.

Chart 5 displays the EDF-Out and Lever-
age-Volatility correlations over time for the 
U.S. network cross section. The correlations 
are Spearman rank correlations, computed 
at each time point using the cross section 
of values corresponding to the banks in the 
network in the month in question. A clear 
pattern emerges, in which the EDF-Out cor-
relation rises above zero during periods of 
significant stress to the financial system. 
During these periods, including in particular 
the Global Financial Crisis, high-EDF firms 
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Chart 3: Default Point/AVL in U.S. Network 
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Chart 5: Cross-Sectional Correlations

Source: Moody’s Analytics
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Chart 4: Asset Volatility in the U.S. Network 

Source: Moody’s Analytics
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drive the propagation of shocks to credit risk 
in the network.  

Chart 6 displays the graph of the U.S. 
network in January 2008, with the same 
graph for October 2014 displayed in Chart 
7 for comparison. The bubble size is propor-
tional to the logarithm of the asset size of 
the corresponding bank. Blue arrows denote 
forcing relationships, whereas red arrows 
denote damping relationships, with arrows 
pointing to the institutions being Granger-
caused (or more precisely in this case, whose 
EDF is the dependent variable in the model). 
We see that Bank of America and JP Morgan 
are very central in October 2014. This is not 
surprising since Bank of America acquired 
Countrywide Financial and Merrill Lynch in 
2008, at the height of the financial crisis, 
and JP Morgan acquired Bear Stearns and 
Washington Mutual in the same year. Man-
aging the legacy assets of the acquired firms, 
all of which were highly visible casualties of 

the crisis, has presented challenges for both 
acquiring banks, which remain in the focus of 
markets for these reasons.

As Chart 6 makes clear, Lehman Brothers, 
Washington Mutual and Merrill Lynch were 
all very central in the network in January 
2008. The number of forcing relationships 
was also very high at that time compared 
with the moderate level we observe in Oc-
tober 2014, a fact that is reflected in the 
relative density of the graph in Chart 6 versus 
the graph in Chart 7. Interestingly, as can be 
seen in the graph for January 2008, major 
insurance companies such as Prudential, 
MetLife, and Aflac exhibited multiple signifi-
cant damping relationships toward several of 
the banks at the heart of the financial crisis. 
This finding is consistent with a buffer role 
for major insurers, in which increases in their 
credit risk signal transfer of risk or losses to 
their balance sheets off the balance sheets 
of insured counterparties. Finally, although 

Wells Fargo acquired Wachovia in 2008, we 
see that it moved to the periphery of the 
network as of October 2014. 

4.2 Case Study: ASEAN-5
In Southeast Asia, measuring and under-

standing the potential impact of systemic 
risk became an imperative after the Asian 
financial crisis of 1997-1998. The crisis began 
in Thailand in July 1997 and quickly spread 
to Malaysia, Indonesia, Korea and the Philip-
pines. Singapore, a regional financial hub 
with an open economy, was affected as well. 
The crisis had a significant impact on these 
countries’ economies. In one year, a decade 
of extremely strong economic growth—the 
East Asian Miracle—was in jeopardy. Be-
tween June 1997 and March 1998, GDP con-
tracted by nearly 6% in Korea, 9% in Thai-
land, and 14% in Indonesia. Equity valuations 
plummeted by 50% or more in the affected 
countries (Berg, 1999). Assessing systemic 
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risk has been a key part of financial supervi-
sion in the region ever since. 

In addition to regulators’ and central 
banks’ increased focus on systemic risk in 
the wake of the crisis (Kawai and Morgan, 
2012), the International Monetary Fund and 
the World Bank jointly initiated the Financial 
Sector Assessment Program in 1999 to as-
sess financial stability and perform stress-
testing of countries’ financial sectors. These 
initiatives have been credited with helping 
Southeast Asian countries weather the worst 
of the Global Financial Crisis and avoid a re-
peat of the economic devastation caused by 
the Asian financial crisis. 

The analysis that follows presents our re-
sults on systemic risk in the Southeast Asian 
financial system during the last 20 years. We 
draw heavily on our exposition of these same 
results in Hamilton, Hughes and Malone 
(2015), our companion paper on the topic in 
Moody’s Analytics Risk Perspectives. 

The results of our empirical analysis are 
based on a dataset of financial institutions 
domiciled in the ASEAN-5 group of coun-
tries, which comprises Indonesia, Malaysia, 
the Philippines, Singapore and Thailand. We 
limit our dataset to financial institutions with 
at least $1 billion in book assets observed at 
some point over their available histories. Our 
sample begins in 1995, runs through Octo-
ber 2014, and includes 201 unique financial 
institutions in the ASEAN-5 countries: 36 in 

Indonesia, 49 in Malaysia, 30 in the Philip-
pines, 46 in Singapore, and 40 in Thailand.

As a preview to our visual outputs, the 
main results of our ASEAN-5 analysis can be 
summarized as follows: (i) weighted-average 
default probabilities for highly connected 
institutions are consistently higher than 
those of large institutions as measured by 
asset size; (ii) both size and systemic influ-
ence weighted-average EDF measures spiked 
during the Asian financial crisis but displayed 
only a small uptick during the Global Finan-
cial Crisis; (iii) the overall level of connected-
ness in the ASEAN-5 network spiked during 
both crisis periods; (iv) the spike in default 
probabilities during the Asian financial crisis 
was primarily the result of a spike in lever-
age rather than a spike in asset volatility; 
(v) default risk and contributions to sys-
temic risk are positively correlated across 
institutions in times of crisis; and (vi) the 
strongest mutually reinforcing relationships 
in the region currently appear to exist be-
tween Thailand and Singapore, and Thailand 
and Malaysia. 

As a first piece of evidence, Table 2 shows 
the 10 financial institutions with the highest 
Out measures as of October 2014 and in-
cludes their Out measures, their EDF values, 
and the value of their book assets in U.S. dol-
lars. TMB Bank Public Co. Limited, based in 
Thailand, exhibits the highest Out measure. 
The value of the Out measure indicates that 

the bank’s EDF movements Granger-cause 
EDF movements in 30.6% of the other finan-
cial institutions in the network. Notably, the 
statistics shown in Table 2 suggest that sys-
temic risk (measured by Out) bears little cor-
relation with either the probability of default 
or with firm size, on average. The correlation 
between EDF and the Out measure across 
financial firms in the ASEAN-5 financial net-
work was actually negative in October 2014, 
as we will see shortly in Chart 12.

The third and fourth columns show the 
firm’s EDF quantile and book-asset quantile 
out of the 122 firms present in the network 
in October 2014. It is also notable that half 
of the 10 firms with the highest systemic risk 
measures as of October 2014 are based in 
Thailand and are about average with respect 
to their EDF levels as well as book-asset size. 
Most of the firms in the top 10 list are banks, 
but the rest are in the broker-dealer, real es-
tate, infrastructure and insurance sectors. 

The results shown in Charts 8 and 9 bring 
the impact of the 1997-1998 Asian Financial 
Crisis into sharp focus. Chart 8 shows the 
weighted average EDF level for the ASEAN-5 
countries over time. We weight the historical 
EDF values using book assets (size) and by 
systemic influence (defined in Section 3). By 
either measure, the risk of default reached a 
historic peak during the Asian financial crisis. 
The average risk dropped sharply after 1998 
but trended higher during the early 2000s 

Table 2: Top 10 Firms Ranked by Out Measure as of October 2014, With EDF Level and Firm Size: ASEAN-5 Network 

Financial Institution

Out EDF Book Assets

Country Value Quantile Value (%) Quantile Value ($ mil) Quantile
TMB Bank Public Co. Limited THA 0.306 1 0.28 0.34 24,568 0.8

OSK Holdings Berhad MYS 0.281 0.99 0.09 0.03 880 0.07

Bank of the Philippine Islands PHL 0.264 0.98 0.39 0.59 28,868 0.81

UOB-Kay Hian Holdings Limited SGP 0.256 0.98 0.30 0.4 2,079 0.38

CIMB Thai Bank Public Co. Limited THA 0.248 0.97 0.33 0.49 7,798 0.61

CitySpring Infrastructure Trust SGP 0.24 0.96 0.11 0.09 1,513 0.24

Bangkok Land Public Co. Limited THA 0.24 0.95 0.08 0.02 1,697 0.3

Hong Leong Capital Berhad MYS 0.231 0.94 0.34 0.51 951 0.08

Bangkok Life Assurance PCL THA 0.231 0.93 0.34 0.52 6,259 0.56

Bangkok Bank Public Co. Limited THA 0.231 0.93 0.24 0.23 78,431 0.95
Source: Moody’s Analytics
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as the dot-com bubble burst, resulting in a 
recession in the U.S. and Argentina default-
ing on its foreign debt. The Global Financial 
Crisis, as severe as it was in the West, is a 
relatively minor blip in the time series for the 
ASEAN-5 nations. 

Chart 9 shows the DGC measure for the 
network at each point in time. In this one 
graph, we get a panoramic view of how 
systemic risk has evolved for ASEAN-5 fi-
nancial institutions over the past 20 years. 
The strength of interconnectedness among 
financial institutions and the high risk of 
contagion that characterized the Asian finan-
cial crisis is captured by the peak 0.31 DGC 
measure. The graph also shows that it took 
at least four years for systemic risk to sub-
side to levels that prevailed before the Asian 
financial crisis. Although economic growth 
in the countries most affected by the crisis 
bounced back strongly after 1998, our results 
on systemic risk corroborate other macro-

financial indicators showing that their finan-
cial systems and economies took a number 
of years to fully heal. The DGC time series in 
Chart 9 attests to the fact that the hazard of 
credit risk spillovers arising from the Global 
Financial Crisis was virtually a nonevent for 
the ASEAN-5 group. Although registering 
a brief spike, the DGC measure continued 
to fluctuate around the 0.18 average that 
prevailed after the Asian financial crisis. In 
contrast, the DGC measure for DFAST-size 
U.S. financial institutions reached a peak of 
0.35 at the height of the Global Financial 
Crisis. Intriguingly, systemic risk as measured 
by the DGC reached its highest level since 
the Asian financial crisis in July 2013. How-
ever, systemic risk has subsided considerably 
since that date, falling to its lowest level in 
20 years. 

Chart 10 reinforces our historical under-
standing of the role of leverage as one of 
the key causes of the Asian financial crisis. 

Here, leverage is defined as the ratio of a 
firm’s default point to the market value of 
its assets. As in Charts 8 and 9, we calculate 
two weighted average measures of leverage: 
book asset (size)-weighted and systemic 
influence-weighted. Size-weighted lever-
age is nearly always higher than systemic 
influence-weighted leverage, in some time 
periods by a considerable margin. The im-
plication is that larger financial institutions 
lever up more; this finding is consistent with 
data for U.S. financial institutions in the pre-
vious subsection as well as recent findings by 
Gandhi and Lustig (2015). 

A second, and perhaps more important, 
implication is that a firm’s size is not per-
fectly correlated with the spillover dimension 
of systemic risk contribution. Chart 11 shows 
size- and systemic influence-weighted aver-
age asset volatility over time. Unlike average 
EDF levels and leverage values, the weighted 
volatility measures rise throughout but peak 
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Chart 10: Default Point/AVL in ASEAN-5 Network 
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Chart 11: Asset Volatility in ASEAN-5 Network 
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well after the Asian financial crisis, around 
the time of Argentina’s default. Systemic 
influence-weighted volatility is everywhere 
above size-weighted volatility: Firms that 
exhibit a relatively high Out ratio, and there-
fore have a high potential for contagion, also 
exhibit higher asset volatility. The Global 
Financial Crisis exerts a stronger effect on 
leverage than on volatility for ASEAN-5 fi-
nancial institutions. Weighted volatility rises 
beginning with the Global Financial Crisis 
and through the European sovereign debt 
crisis, but the magnitude of the increase is 
relatively small. Weighted leverage spikes to 
levels attained during the early 2000s but 
then falls sharply to pre-Global Financial 
Crisis levels. 

Tracking cross-sectional correlations 
over time can yield additional insights into 
system dynamics. In Chart 12, we display 
two Spearman (rank) correlations: the EDF-
Out measure correlation and the leverage-
volatility correlation. At each time point, the 
correlations shown are computed using only 
the cross section available at that time point 
for the system. It is immediately clear that 
the EDF-Out correlation tends to be negative 
during calm periods and positive during cri-
sis periods. The interpretation is that riskier 
(that is, higher default probability) financial 
institutions increasingly drive the system 
during crises. Leverage and volatility correla-
tions are always negative, but rise (become 
less negative) in the runup to crisis periods. 
Thus the negative relationship between le-
verage and volatility implied by the VaR tar-
geting rule of Adrian and Shin (2014) appears 

to become weaker 
in the cross section 
of financial firms 
during crises. Chart 
12 also shows that 
the EDF-Out corre-
lation tends to spike 
at the beginnings 
of crisis episodes, a 
pattern that is also 
apparent in data for U.S. financial institutions 
around 2007-2009. 

Thailand was the epicenter of the Asian 
financial crisis in 1997, and the devaluation 
of the baht set off a cascade of financial 
distress throughout the ASEAN countries. 
Our study of Granger causal connections 
among EDF measures reveals that financial 
institutions in Thailand still represent a con-
centration of systemic risk in the ASEAN-5 
network. Financial institutions in Singapore 
and Malaysia also have a high concentration 
of positive (that is, forcing) Granger causal 
relationships. Chart 13 shows the complete 
network map of Granger causal connections 
as of October 2014. Circles represent finan-
cial institutions and are color coded by coun-
try of domicile. This graph displays linkages 
based on the coefficients at lag 1 in the VAR 
models using EDF measures. Red lines cor-
respond to negative coefficients (damping 
effects) and blue lines correspond to positive 
coefficients (forcing effects). The sets of lines 
connecting financial institutions in Thailand 
(green), Singapore (yellow) and Malaysia 
(red) are numerous, giving the graph a very 
dense appearance on the right side. The lines 

connecting Thailand, Singapore and Malay-
sia also tend to be blue, meaning that the 
relationship between financial institutions in 
these countries is of the forcing variety: An 
increase in credit risk among financial insti-
tutions in one of these countries has a high 
propensity to cause an increase in credit risk 
in the others.

4.3 Case Study: Global Megabanks
The third and final case study we pres-

ent pertains to the set of Global Megabanks, 
which includes international financial 
institutions with assets exceeding $100 bil-
lion. Table 3 displays the top 15 firms in the 
Global Megabanks network by Out measure 
as of October 2014 after an additional filter 
removed institutions with book asset values 
below $500 billion. Financial institutions in 
Germany, China and Canada are featured 
prominently. Of particular concern is the 
top entry on the list, Deutsche Bank Ak-
tiengesellschaft, which also has an EDF at 
the 87th percentile of the EDF distribution 
and an asset size at the 95th percentile of 
the book asset size distribution within the 
network. Large, highly connected banks with 
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nontrivial default probabilities should be 
a primary concern for global regulators. A 
second German bank, Commerzbank, also 
raises some concern because its EDF is in the 
93rd percentile within the Global Megabank 
network, and its size is in the 79th percentile. 
Four Canadian banks make the list—more 
than any other country. These results should 
draw the attention of both European and 
Canadian regulators.

As we emphasized in the introduction, 
the correlation between the Out measure 

and the book size of assets in the cross 
section is low. In October 2014, for ex-
ample, the Spearman rank correlation be-
tween Out measure and size in the Global 
Megabanks networks was a mere -0.02. If 
we look at the cross-sectional correlation 
in the Global Megabanks network in Janu-
ary 2008, a time of significantly higher 
market stress, we do find a higher Spear-
man rank correlation: 0.24. In January 
2009, the correlation is 0.26. Thus, cor-
relations in times of crisis are not strongly 

positive. On the 
whole, our results 
confirm the fact 
that the size and 
the degree of 
interconnected-
ness, at least for 
the market-based 
metrics we pro-
pose, have a mod-
est relationship 
at best, even in 
times when regu-
latory interven-
tion is most likely. 

Chart 14 displays the weighted average 
EDF measures for the Global Megabank 
network over time. Using 1% and 2% EDF 
thresholds as warning signals, a history of 
credit risk in global SIFIs emerges. The size-
weighted average EDF of Global Megabanks 
around the time of the Asian crisis first ex-
ceeded 1% in November 1997. It fell in early 
1998, only to rise above the 1% threshold 
again in June 1998. It spiked to above 2% in 
February 2001 as the dot-com bubble burst, 
only to fall before spiking and remaining 
above 2% again from July-December 2002 
following the Argentine default. The sys-
temic influence-weighted EDF was below 
the size-weighted EDF for the 2000-2007 
period but spiked along with the size-
weighted measure to levels nearing 5% at 
the height of the Global Financial Crisis, 
only to fall significantly below the size-
weighted EDF measure in the post-2010 
period. Consistent with the results from the 
previous two case studies, it should not be 
surprising that the latter divergence in size-
weighted and systemic importance-weight-
ed measures occurs as the system reverts to 
a normal state following the crisis.

Table 3: Top 15 Financial Firms Ranked by Out Measure as of October 2014*: Global Megabanks

Financial Institution
Out EDF Book Assets

Country Value Quantile Value (%) Quantile Value ($ mil) Quantile
Deutsche Bank Aktiengesellschaft DEU 0.45 1.00 1.09 0.87  2,086,392.26 0.95
Bank of Nova Scotia CAN 0.41 0.98 0.13 0.06  702,110.11 0.78
Toronto Dominion Bank CAN 0.38 0.96 0.09 0.04  817,369.13 0.84
Commerzbank Aktiengesellschaft DEU 0.28 0.91 1.78 0.93  729,857.07 0.79
Ping An Insurance (Group) Co. of China Limited CHN 0.27 0.90 1.01 0.86  621,837.72 0.75
Bank of Montreal CAN 0.25 0.86 0.11 0.05  520,377.94 0.7
Assicurazioni Generali S.p.A. ITA 0.23 0.80 0.37 0.38  592,790.42 0.73
Bank of Communications Co. Limited CHN 0.23 0.81 0.41 0.45  978,156.14 0.88
Mizuho Financial Group Inc. JPN 0.22 0.79 0.56 0.64  1,568,381.90 0.91
Banco Santander S.A. ESP 0.21 0.75 0.41 0.46  1,488,356.45 0.91
National Australia Bank Limited AUS 0.20 0.73 0.35 0.36  743,533.04 0.8
Australia and New Zealand Banking Group Limited AUS 0.20 0.72 0.27 0.27  648,440.61 0.77
Barclays PLC GBR 0.19 0.70 0.66 0.69  2,178,844.41 0.96
Royal Bank of Canada CAN 0.19 0.67 0.15 0.08  810,381.48 0.83
Nordea Bank AB SWE 0.19 0.68 0.20 0.12  787,911.97 0.83

*This table reflects the filtering of the full list of Global Megabank firms to retain only those with assets exceeding $500 billion.
Source: Moody’s Analytics
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To complement the preceding results, 
Chart 15 shows the DGC of the EDF net-
work for Global Megabanks over time. The 
spike in the first period of the sample, from 
1987 to the early 1990s, corresponds to the 
U.S. savings and loan crisis. From a nadir 
in mid-1996, the DGC rose steadily during 
the Asian crisis, Russian default, and LTCM 
debacle until reaching a peak in November 
1999. From another low point in December 
2002, the DGC then rose steadily during 
the Great Moderation, surpassing 0.3 again 
for the first time in December 2006, before 
falling slightly until soaring to a high point 
of 0.45 in March 2009, immediately fol-
lowing the tensest moments of the Global 
Financial Crisis. Together, Charts 14 and 15 
tell a story that is consistent with familiar 
patterns from the last three decades of 
financial history.

EDFs are driven primarily by firm leverage 
and firm asset volatility. Charts 16 and 17 

plot the evolution 
of weighted aver-
age measures of 
leverage and vola-
tility, respectively, 
over time for the 
Global Megabanks 
network. A few in-
sights emerge from 
these plots. Re-
garding leverage, 
we see that large 
banks are more 
highly leveraged 
than systemically 

important banks through the entire sample, 
although this gap narrows considerably dur-
ing crises. As in the two previous case stud-
ies, we see that leverage increases dramati-
cally during times of crisis, and especially in 
the case of the Global Financial Crisis. The 
sovereign debt crisis in Europe had a more 
marked impact on leverage in the Global 
Megabank network, which includes several 
major European banks, than it did in the  
U.S. network. 

Turning to volatility, we see that system-
ic influence-weighted average volatility is 
consistently greater than size-weighted vol-
atility, with the one exception to this rule 
being the S&L crisis in the late 1980s, when 
the latter was higher. Four distinct peaks are 
visible for both volatility series: one corre-
sponding to the S&L crisis in the late 1980s, 
a second peak in July 1993 nestled between 
the ERM crisis in 1992 and the Tequila crisis 
in 1994, a third series of peaks that form 

a historically high plateau stretching from 
mid-2001 until late 2002, and a final peak 
in December 2009 corresponding with the 
end of the Global Financial Crisis. Note 
that volatility tends to peak a few months 
later than leverage in each crisis episode 
and takes more time to build up as well as 
more time to revert to its historical mean. 
Conversely, we can characterize leverage as 
two distinct regimes, one pre- and the other 
post-Global Financial Crisis, with post-crisis 
mean leverage being much higher than pre-
crisis mean leverage. 

Although the late 1990s was a period of 
particularly high asset volatility for global 
SIFIs, the Global Financial Crisis was unique 
because the confluence of high leverage and 
high volatility together, which explains the 
dramatic increase in default probabilities for 
Global Megabanks during this period. Our 
systemic risk tools are useful because they 
show us further that, though systemically 
important banks tend to have higher asset 
volatilities even in calm periods, it is the 
particularly sharp increase in leverage dur-
ing financial crises for connected firms that 
explains why highly systemic firms tend to 
coincide with high credit risk firms during 
such periods.

Chart 18 displays the EDF-Out and 
Leverage-Vol correlations over time for the 
Global Megabank cross section. The cycli-
cal pattern of the EDF-Out relationship is 
noteworthy, as is the secular trend upward 
(from highly negative to modestly nega-
tive) of the Leverage-Vol correlation. These 
results suggest that Global Megabanks may 
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Chart 16: Default Point/AVL in GMB Network 

Source: Moody’s Analytics
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Chart 17: Asset Volatility in the GMB Network 

Source: Moody’s Analytics
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soon be in store for a period in which high 
credit-risk firms begin to drive the network 
for a few years, given that the EDF-Out cor-
relation is near the historical minimum. Also, 
they suggest that financial innovation may 
be weakening the natural negative relation-
ship between bank leverage and bank asset 
volatility in the cross section of major global 
financial institutions.

Finally, Chart 19 displays a snapshot of 
the Global Megabank network in October 
2014. Only institutions with book asset 
values greater than $500 billion were 
included. We see that U.S. firms such as 
MetLife, Morgan Stanley, and JP Morgan 

Chase are located 
near the center of 
the network and 
display numerous 
forcing relationships 
with other financial 
firms. This is also 
true for several 
foreign financial in-
stitutions such as Toronto Dominion Bank 
of Canada, Credit Suisse Group of Swit-
zerland, and Credit Agricole of France. The 
centrality of MetLife is particularly note-
worthy, given its recent lawsuit against 
the Financial Stability Oversight Council 

protesting its designation as a Systemically 
Important Financial Institution.6 

6	 The case reference is MetLife Inc. v. Financial Stability 
Oversight Council, U.S. District Court, District of Columbia, 
No. 15-00045.

Section 5: Econometric results

To complement the case study results of 
Section 4, this section presents findings from 
a few key empirical exercises designed to test 
the predictive power of our bank-specific 
SRM analytics for future credit events as well 
as validate the use of SRM time series ana-
lytics in conjunction with CCAR variables for 
stress-testing purposes. 

5.1 Predictive value of SRM analytics 
for future credit risk events during the 
Global Financial Crisis

One of the major concerns of banks fac-
ing an economic contraction or adverse 
systemic event is the possibility of a spike in 
their credit risk, or a spike in the credit risk 
of one of their major counterparties, during 
a short- to medium-term time horizon. This 

is also a major concern of regulators such as 
the Fed. As a simple measure of the predic-
tive value of our leading bank-specific SRM 
analytics, we run a cross-sectional regression 
of the form 

iiii XEDFJanY εβφα +++= 2008
,

where iY  is a dummy variable that is equal 
to 1 for banks whose EDF exceeded 10% dur-
ing the February 2008-January 2009 period, 
and equal to zero for banks whose EDF did 
not exceed this threshold during that period. 
The variable iEDFJan2008  contains the 
value, measured at the end of January 2008, 
of the initial EDF value for bank i. The variable 

iX  is a selected bank-specific SRM metric, 
also measured at the end of January 2008, 

and iε  is the mean-zero Gaussian error term. 
In Table 4, we report the results of running 
a baseline regression with the restriction

0=β  as well as five additional regressions, 
each corresponding to a different choice for 
the variable iX . The five choices we consider 
for iX  are the Out measure, the Out.plus 
measure, the In measure, the In.plus measure, 
and a Beta measure. The specific Beta mea-
sure we use here is the coefficient of the log 
EDF of the bank on the log Out-weighted EDF 
of the system in a contemporaneous time se-
ries regression that uses the last 60 months of 
data, up to and including January 2008. 

The results of Table 4 are clear. First, the 
initial EDF has significant predictive power for 
subsequent credit risk spikes in the cross sec-
tion of banks and achieves an R-squared of 

1818

Chart 18: Cross-Sectional Correlations

Source: Moody’s Analytics
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Chart 19: Global Megabanks Network

Source: Moody’s Analytics
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18%. Second, four of the five SRM analytics we 
consider alongside the initial EDF value have 
coefficients that are statistically significant at 
the 1% level, and their associated regressions 
all possess R-squared values in excess of 21%. 
The strongest measure in this test is the Out.
plus metric, whose regression has an R-squared 
value of 22.8%. Only the Out measure, whose 
coefficient has a p-value of 0.07, is not signifi-
cant at the 1% level. These results are robust to 
reasonable variations in the 10% EDF threshold 
and the reference date (in this case January 
2008) of the exercise. 

Additionally, if we replace the exceedance 
dummy variable iY  with the maximum value 
of the EDF attained during the February 
2008-January 2009 period for each bank and 
rerun our regressions, the results are qualita-
tively similar to those shown in Table 4. The 
basic result holds: SRM analytics add robust, 
additional predictive sorting power to the 
initial EDF for subsequent credit risk spikes 
by U.S. banks during the worst period of the 
Global Financial Crisis.

5.2 Relationship of SRM analytics to 
CCAR variables: The macro-financial 
system

Having shown that our SRM analytics 
help to sort banks in the cross section with 
respect to future credit risk realizations, we 

now show that SRM analytics exhibit statisti-
cally significant, and in several cases bidirec-
tional, Granger causal relationships with key 
CCAR variables. Furthermore, we show that 
the extent of such relationships is consistent 
with what we find for leading systemic risk 
measures from the literature.

Turning first to the results for the SRM 
analytics, we compute the F-statistics 
relevant for judging Granger causality for 
models run at the monthly frequency for 
each of a set of selected CCAR variables on 
four leading time series from the SRM. The 
four SRM time series analytics we consider 
are the Out.plus-weighted EDF, the Out.
plus-weighted market value capital ratio, the 
Out.plus-weighted book value capital ratio, 
and the Degree of Granger Causality. The 
CCAR variables we consider are U.S. real GDP 
growth, the CPI inflation rate, the Dow Jones 
index (in log differences), the Chicago Board 
Options Exchange Market Volatility Index, 
the S&P Case Shiller Home Price Index (in 
log differences), the commercial real estate 
price index from the U.S. financial accounts 
(in log differences), the unemployment rate 
(in differences), the bank prime loan interest 
rate, the Merrill Lynch 10-year BBB corporate 
bond rate (in differences), and the three-
month Treasury bond yield. The results of 
this exercise are displayed in Table 5. 

We can draw several interesting conclu-
sions from the results in Table 5. First, we see 
that the capital ratio measures, but not the 
EDF or DGC measures, drive and respond to 
real GDP growth. Second, we see that the 
EDF measure, but not the capital ratio or 
DGC measures, has a strong lead-lag rela-
tionship with inflation. Third, we see that of 
the SRM analytics, the EDF measure alone 
drives and is driven by the Dow Jones market 
return, the VIX, and the growth rate of both 
real estate price indexes. The EDF measure 
also drives changes in the unemployment 
rate, although not the other way around. 
Finally, we find that while the DGC measure 
appears only weakly related or unrelated 
to most of the CCAR variables, it strongly 
drives the bank prime loan rate, the 10-year 
BBB corporate bond interest rate, and the 
three-month Treasury bond yield. The latter 
yields in turn appear to drive both capital 
ratio measures. 

When we test the Granger causality rela-
tionships of the SRM variables with one an-
other (not shown), we find that the capital 
ratio and DGC measures all strongly Grang-
er-cause each other, but that none of them 
Granger-causes or is Granger-caused by the 
EDF series. Putting this together with the 
results of Table 5, we can paint a picture of 
an economy with two distinct chains of im-

Table 4: EDF 10% Threshold Exceedance Regressions for the U.S. Network*
February 2008-January 2009

Variable Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat

Intercept 0.24 7.57 0.14 2.33 0.16 3.86 0.12 2.14 0.13 2.76 0.17 4.23
EDF-Jan-08 0.03 6.46 0.03 5.55 0.03 5.99 0.03 6.64 0.03 6.7 0.02 4.66
Out 0.48 1.85
Out.plus 1.13 3.46
In 0.57 2.92
In.plus 1.33 3.31
Beta 0.21 2.89
R-squared 0.18 0.194 0.228 0.215 0.218 0.214

* Each regression is a linear probability model of the threshold exceedance dummy variable, which is equal to 1 for banks whose EDF exceeded 10% dur-
ing the February 2008-January 2009 period and zero otherwise, against the explanatory variables indicated.  The regression is estimated using the January 
2008 cross section of the 194 publicly traded U.S. financial institutions available after applying book asset size and data availability filters. Coefficients in 
bold are statistically significant at the 1% level in a two-sided t-test against the null hypothesis of a zero coefficient.  
Source: Moody’s Analytics
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portant macro-financial relationships. In the 
first cluster of such relationships, the credit 
risk of systemically important financial 
firms drives and responds to innovations in 
goods, asset and real estate prices. In the 
second cluster of relationships, the degree 
of financial network connectivity (the DGC) 
drives capital ratios and key interest rates/
yields in the economy, which in turn drive 
real GDP growth through standard macro 
channels. The two chains are connected 
via the response of asset prices to changes 
in yields.

The fact that the DGC is related to capital 
ratios and key yields suggests that it may be 
related as well to the asset growth lending 
channel described by Adrian, Estrella and Shin 
(2010), in which the term spread drives the 
net interest margin of banks, which in turn 
drives the size of bank balance sheets. They 
find that expansions of the quantity of as-
sets on bank balance sheets, due to increased 
lending, in turn spur economic growth.  

We test the hypothesis that the DGC 
Granger-causes the term spread directly using 
12 monthly lags of both variables, where we 

construct the term 
spread as the differ-
ence between the 
10-year and three 
-month Treasury 
yields following 
Adrian, Estrella and 
Shin (2010). Using 
a sample of 463 
monthly observa-
tions, we find that 
we can reject the 
null hypothesis that 
the DGC does not 
Granger-cause the 

term spread based on a p-value of 0.0001. 
In contrast, the F-test of the null hypothesis 
that the term spread does not Granger-cause 
the DGC has a p-value of 0.80.

Chart 20 displays the impulse-responses 
for the reduced-form VAR system compris-
ing the term spread and the DGC measure 
to generalized one standard deviation inno-
vations. Bands corresponding to two boot-
strapped standard errors of the responses, 
computed using 500 Monte Carlo iterations, 
are shown in red. 

Inspection of the impulse-response graph 
in Chart 20 indicates that increases in the 
DGC tend to lower the term spread at the 
three-month horizon, followed by an increase 
in the term-spread response that becomes 
positive and statistically significant at the 
nine-month horizon. One interpretation of 
this finding is that the uncoupling of credit risk 
linkages between many banks in the after-
math of the financial crisis—associated with a 
fall in the DGC—was the result of a significant 
decrease in the volume of repo/reverse repo 
transactions in the system. The decreased 
relative demand for long-term versus short-
term credit resulting from the decreased repo 
activity led naturally to the immediate (one-

Table 5: Granger Causality Between CCAR and SRM Analytics*
Granger causality: CCAR causes SRM / SRM causes CCAR

Out.pwEDF Out.pwMVCR Out.pwBVCR DGC

Real GDP growth NO/NO YES/YES YES/YES YES(5%)/NO

Inflation YES/YES YES/NO YES(5%)/NO NO/NO

DJ (log diff.) YES/YES NO/NO NO/NO YES/NO

VIX YES/YES(5%) YES/NO NO/NO NO/NO

S&P Case Shiller index (Log diff.) YES/YES NO/NO NO/NO NO/NO

Commercial real estate index (Log diff.) YES/YES NO/NO NO/NO NO/NO

Unemployment rate (diff.) NO/YES NO/NO YES/NO NO/NO

Bank prime loan interest rate NO/NO YES/YES(5%) YES/YES NO/YES

Merrill Lynch 10-yr BBB corporate bond rate (diff.) YES/NO YES/NO YES/NO NO/YES

Three-mo Treasury yield NO/NO YES/YES YES/YES NO/YES

*This table reports whether the F-test of Granger causality was significant at the 1% or 5% level for models that use 12 monthly lags of the variables in the given row and 
column. Fields marked “YES” are significant at the 1% level. The number of observations for each row ranges from 162 to 463 months, depending upon the pair of time 
series variables being tested. CCAR variables were transformed to stationarity via first differencing (or log differencing) as necessary based on the results of an ADF test with 
a constant, a time trend, and automated lag selection based on SIC.

Source: Moody’s Analytics
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Chart 20: Impulse-Response Plots 

Source: Moody’s Analytics
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quarter ahead) steepening of the yield curve 
that followed. Further research is necessary 
to understand the potential importance and 
prevalence of this channel. 

To close this section, we compare the 
performance of our systemic risk analytics 
with leading systemic risk analytics from the 
academic literature. To that end, we repeat 
the Granger causality exercises of Table 5 us-
ing five selected systemic risk measures from 
the dataset of Giglio, Kelly, and Pruitt (forth-
coming). Although those authors examine 
the predictive power of 18 measures from 
the literature for median and 20% quantiles 
of industrial output growth in addition to 
five systemic risk indexes of their own de-
sign, we focus on a subset of three measures 
that demonstrate very strong performance 
in their study (turbulence, market leverage, 
and the Gilchrist-Zakrajsek excess bond 
premium) as well as two measures that have 
received significant attention in policy dis-
cussions of systemic risk (CoVaR, MES-BE). 
The results of our Granger causality tests are 
displayed in Table 6. 

The results of Table 6 can be sum-
marized as follows. We take statistical 

significance at the 1% level or better as 
evidence of a Granger causal relationship. 
According to that standard, the turbulence 
measure of Kritzman and Li (2010) Grang-
er-causes seven of the 10 CCAR variables 
considered—the most of any systemic risk 
measure—but is Granger-caused only by 
the commercial real estate index in log dif-
ferences. Market leverage Granger-causes 
five CCAR variables, but is Granger-caused 
by eight CCAR variables, for 13 Granger 
causal connections in total. The GZ credit 
spread measure of Gilchrist and Zakrajsek 
(2012) exhibits a total of six Granger-causal 
connections with the CCAR variables, with 
the CoVaR measure of Adrian and Brunner-
meier (2011) and the MES-BE measure of 
Brownlees and Engle (2011) attaining four 
connections each. 

For purposes of comparison, the Out.
plus-weighted average EDF measure from 
Table 5 displays 11 Granger causal con-
nections with CCAR variables, with both 
Out.plus- weighted average capital ratio 
measures attaining eight total Granger 
causal connections with the CCAR variables. 
Thus, our measures are comparable in this 

respect with three of the best-performing 
measures (turbulence, market leverage, 
and GZ) from the study of Giglio, Kelly and 
Pruitt (forthcoming). Those authors employ 
quantile regressions and focus primarily on 
tail realizations of output growth proxies 
and interest rates. However, given the fact 
that linear regression coefficients can be 
estimated consistently using symmetric 
weighted combinations of quantile coef-
ficient estimates, following Theorem 4.3 of 
Koenker and Bassett (1978), establishing 
linear dependence, or lack thereof, of CCAR 
variables on past realizations of systemic 
risk measures (and vice versa) is an empiri-
cal matter. By resolving this issue in the af-
firmative for many pairs of CCAR-systemic 
risk analytics, our results complement those 
of Giglio, Kelly and Pruitt (forthcoming).  
Furthermore, our findings strongly suggest 
that leading systemic risk measures, includ-
ing the SRM analytics presented in this 
paper, have the potential for explicit use in 
regulatory stress-testing exercises, given 
the robust lead-lag relationships that exist 
between these variables and the set of core 
CCAR variables. 

Table 6: Granger Causality Between CCAR Variables and Selected Systemic Risk Measures  
From Giglio, Kelly and Pruitt (Forthcoming)*
Granger causality: CCAR causes systemic risk / systemic risk causes CCAR

Turbulence Mkt. Lev. GZ CoVaR MES-BE

Real GDP growth NO/NO YES/YES NO/NO NO/NO NO/NO

Inflation NO/YES YES/NO NO/YES NO/NO NO/NO

DJ (log diff.) NO/YES YES/YES NO/NO YES/NO YES/NO

VIX NO/YES YES/NO YES/YES YES/NO YES/NO

S&P Case Shiller index (Log diff.) NO/YES YES/YES NO/YES(5%) NO/YES NO/NO

Commercial real estate index (Log diff.) YES/YES YES/YES YES/YES YES(5%)/YES NO/YES

Unemployment rate (diff.) NO/YES YES/YES NO/YES NO/YES(5%) NO/YES

Bank prime loan interest rate NO/NO NO/NO NO/NO NO/NO NO/NO

Merrill Lynch 10-yr BBB corporate bond rate (diff.) NO/YES YES/NO NO/NO YES(5%)/NO NO/NO

Three-mo Treasury yield NO/NO NO/NO NO/NO NO/NO NO/NO

*This table reports whether the F-test of Granger causality was significant at the 1% or 5% level for models that use 12 monthly lags of the variables in the given row and 
column. Fields marked “YES” are significant at the 1% level. The number of observations for each row ranges from 143 to 463 months, depending upon the pair of time 
series variables being tested. CCAR variables were transformed to stationarity via first differencing (or log differencing) as necessary based on the results of an ADF test with 
a constant, a time trend, and automated lag selection based on SIC.

Source: Moody’s Analytics
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Section 6: Bank-to-bank credit risk spillovers

In addition to generating informative 
systemic risk time series for a given finan-
cial network scope, and time series—such 
as Out and Out.plus—for individual finan-
cial institutions vis-à-vis the rest of the 
network, the SRM can be queried to gener-
ate time series of F-statistics, VAR model 
coefficients, and coefficient t-statistics 
for any pair of institutions in the network. 
The latter outputs are, in fact, the granular 
building blocks from which the systemic risk 
outputs are computed. These bank-to-bank 
outputs often, but not always, mirror larger 
trends in the systemic risk series. We focus 
on selected pairs of financial institutions in 
the Global Megabanks network for the pur-
poses of illustration. The pairs are: Goldman 
Sachs/Bank of New York Mellon, Goldman 

Sachs/Mizuho Financial Group, and BNP 
Paribas/Banco Santander. For all pairs, we 
plot the two F-statistics used to compute 
the relevant entries of the adjacency matrix 
relevant for computing the Out measures 
and the DGC. In each plot, the critical value 
corresponding to the 5% significance level 
of the relevant F distribution is plotted in 
red for comparison. Exceedances of this 
critical value in a given month are coded as 
1 in the appropriate row and column of the 
adjacency matrix, and non-exceedances are 
coded as zero.

For the Goldman/BoNY Mellon pair, we 
see that BoNY Mellon’s EDF Granger-caused 
the EDF of Goldman Sachs during 2008 and 
in late 2012-early 2013 (see Chart 21). These 
correspond to peak periods of market stress 

during the Global Financial Crisis and the 
European Sovereign Debt Crisis, respectively. 
Goldman Sachs, in contrast, Granger-causes 
BoNY Mellon from 2008-2011 inclusive (see 
Chart 22), and the statistical significance 
of the latter Granger causal linkage was 
much higher. 

The patterns exhibited in the Goldman/
Mizuho FG relationship (see Charts 23 and 
24) are quite similar to those we find in 
the Goldman/BoNY Mellon relationship, 
although slightly weaker. This is not surpris-
ing, as Goldman/BoNY are both based in the 
U.S., whereas Mizuho FG is based in Japan.

Finally, the pattern of credit risk spillovers 
between BNP Paribas and Banco Santander 
is somewhat similar to the Goldman/
BoNY Mellon relationship, but with a much 
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Chart 21: Global Megabanks Network

Source: Moody’s Analytics
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Chart 22: Global Megabanks Network

Source: Moody’s Analytics
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Chart 23: Global Megabanks Network

Source: Moody’s Analytics
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Chart 24: Global Megabanks Network

Source: Moody’s Analytics
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greater degree of mutual Granger causality 
from early 2012 to October 2014, when our 
sample ends (see Charts 25 and 26). During 
the Global Financial Crisis, however, BNP 
Paribas played a role similar to Goldman in 
its relationship with BoNY Mellon, in that its 
EDF Granger-caused the EDF of Santander 
with a high degree of statistical significance 
during the 2008-2011 period, but not before. 
Banco Santander, on the other hand, exhib-

ited a spike in its F-statistic in 2007, Granger-
causing BNP Paribas briefly before the worst 
part of the Global Financial Crisis in 2008. 
In the Goldman/BoNY Mellon relationship, 
BoNY Mellon exhibited a similar spike in its 
F-statistic in early 2006, briefly Granger-
causing Goldman just prior to the onset of 
the Global Financial Crisis. 

The above evidence is consistent with a 
pattern of bellwether-leader relationships, 

in which “bellwether” banks such as BoNY 
Mellon or Santander provide early warning 
signals to “leader” banks such as Goldman 
Sachs and BNP Paribas, which then take the 
reins in driving credit risk spillovers to the 
former banks during the height of stress pe-
riods. If true more generally, this observation 
illustrates one way that systemic risk propa-
gates on a more granular level throughout 
the financial network. 

Conclusion

In this paper, we have described a new 
tool for counterparty and systemic risk 
analysis, which we call the Systemic Risk 
Monitor, and illustrated its outputs using 
three networks with distinct geographical 
footprints and institutional size thresholds: 
the U.S. DFAST-sized banks with assets of 
at least $10 billion, the ASEAN-5 country 
banks with assets of at least $1 billion, and 
a set of Global Megabanks with assets of 
at least $100 billion. We present results for 
dynamic network analyses of credit risk spill-
overs, based on the EDF measure of finan-
cial firm-specific default probabilities from 
Moody’s CreditEdge. 

As part of our approach, we develop novel 
measures of bank-specific systemic risk ex-
posures and contributions such as systemic 
risk factor betas and the Out.plus measure, 
respectively. Our Out.plus and In.plus mea-
sures innovate on the Out and In measures 

commonly used in the network literature. 
In analogy to forcing relationships in an os-
cillator, the Out.plus and In.plus measures 
extract signals more closely related to the 
forcing relationships in the network that are 
central to shock propagation at the monthly 
horizon. Our time series systemic risk mea-
sures track major events in financial markets 
in each of the three regions studied, with ap-
propriate relative regional differences. In the 
ASEAN-5, for example, systemic risk mea-
sures peaked during the Asian crisis, whereas 
in the U.S. they peaked during the Global 
Financial Crisis, with Global Megabanks 
displaying an intermediate pattern that is 
slightly closer to that of the U.S. 

Our econometric study of the cross-
sectional and time-series properties of our 
systemic risk measures for the U.S. provides 
results that strongly support their potential 
utility for formal incorporation into stress-

testing efforts. In the cross section, our mea-
sures forecast future high credit risk events 
during 2008 after controlling for the initial 
value of firm EDF. In the time series, we find 
that our measures exhibit highly statisti-
cally significant Granger causal relationships 
with multiple CCAR variables and that their 
performance in this regard is similar to the 
most promising systemic risk analytics from 
the academic literature. Finally, a more 
granular analysis of bank-to-bank credit risk 
spillovers between individual bank pairs in 
the Global Megabanks network suggests the 
possibility of “bellwether-leader” patterns 
of credit risk transfer. In such patterns, pre-
crisis periods during which bellwether banks 
briefly drive credit risk in leader banks are 
followed by longer periods that comprise 
the height of a crisis and its aftermath, 
in which leader banks drive credit risk of 
the bellwethers. 
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Chart 26: Global Megabanks Network

Source: Moody’s Analytics
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Chart 25: Global Megabanks Network

Source: Moody’s Analytics
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