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Multi-Period Stochastic Scenario 
Generation 
Robust models are currently being developed worldwide to meet the 
demands of dynamic stress testing. This article describes how to build 
consistent projections for standard credit risk metrics and mark-to-market 
parameters simultaneously within a single, unified environment: stochastic 
dynamic macro models. It gives a step-by-step breakdown of the 
development of a dynamic framework for stochastic scenario generation 
that allows risk managers and economists to build multi-period 
environments, integrating conditional credit and market risk modeling. 

Introduction  
Dynamic stress testing and multi-period credit portfolio analysis are priority areas 
for risk managers and academics. New methodologies and techniques are being 
developed across the globe, mainly focusing on building robust models that 
translate macro scenarios into conditional risk parameters (so-called satellite 
models). But a significant challenge emerges when it comes to building 
stochastic multi-period environments. Dynamic simulations can quickly get out of 
control when a modeler starts increasing the sources of uncertainty and the out-
of-sample periods. 

In this article, we develop an innovative framework to handle multi-period 
stochastic simulations. The proposed methodology hinges on macro models as 
the starting point in the scenario generation process. Once we obtain the 
simulations from the econometric model, we need to embed these paths with a 
probability structure. To this end, we develop a rank-ordering mechanism that 
considers several dimensions of economic performance to produce an overall 
score for each scenario. With the scenarios and their probabilities in hand, we 
can run these forecasts through stress testing satellite models. This step 
provides us with forward-looking, multi-period, scenario-specific simulations for 
all relevant risk parameters. We illustrate this process with two leading examples: 
default risk for a lending portfolio (US mortgages) and mark-to-market risk for a 
traded credit portfolio (rate and credit spread risks).  

The structure of the article is consistent with the steps required to build the 
proposed framework. It starts with the econometrics needed to build dynamic 
stochastic macro simulations (Step 1). Next, it describes our methodology for 
embedding the forecasted paths with probability metrics (Step 2). Satellite 
models are then used to compute path-specific forecasts for credit and market 
risk parameters (Step 3). 

The combination of conditional risk parameter realizations and their probabilities 
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provides the modeler with the necessary inputs to address dynamic stress testing questions (such as probabilities 
of losses for a given stressed scenario) and to build a stochastic framework for multi-period credit portfolio 
management. 

Step 1: Simulations using a Dynamic Stochastic General Equilibrium (DSGE) model  

To overcome the challenge of building multi-period scenarios, we propose the use of dynamic stochastic 
macroeconomic models. The main advantage of this family of models is the ability to simulate millions of time-
series of economic shocks that are linked to each other through general equilibrium conditions. In other words, 
the simulations are consistent within periods (alternative macro series must satisfy equilibrium conditions), and 
the connection across subsequent periods comes from inter-temporal optimal behavior and pricing. This is the 
reason why these types of models are usually referred to as “macroeconomic models with micro-foundations.”  
 
At the core of their set-up are optimality and arbitrage-free pricing conditions. The following sub-steps can be 
used to produce millions of simulated stochastic paths. 

Step 1.A: Find the equilibrium conditions that solve the selected DSGE model 
In practice, this requires the modeler to solve dynamic stochastic optimization problems. Recursive methods are 
leveraged in order to obtain the so-called “Bellman Equations.” These non-linear formulas represent the intra-
period optimal transition for key economic variables. They provide the underlying dynamics of the system, 
connecting endogenous macro and financial variables with the sources of uncertainty: the shocks to economic 
agents and macroeconomic policies. Within these equations we also obtain the “arbitrage-free” conditions for any 
financial assets that are priced in the model. In other words, the equilibrium system requires market-consistent 
pricing for all assets over time. 
 
Figure 1. Example of a standard DSGE model set-up 
 

 
Source: Moody’s Analytics 
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Figure 2. Example of arbitrage-free pricing equations and other optimality conditions 
 

 
Source: Moody’s Analytics 

 

Step 1.B: Build the system of stochastic differential equations that represent solutions to the model 
This step is achieved by log-linearization of equilibrium conditions around “steady-state” (the long-term solution 
for an economic series that is constant over time). The original macro variables get replaced by distances to the 
long-term values, and the non-linear system gets replaced by its first-order Taylor approximation.1 This linear 
system is mapped into a state-space matrix form to facilitate its estimation. 

Step 1.C: Estimate the linear system of stochastic differential equations 
Several techniques are available to estimate (or calibrate) the stochastic system of equations. There is vast and 
detailed literature on how to estimate DSGE models using Bayesian techniques. Fernández-Villaverde (2010) 
provides an overview of existing techniques and illustrates the practical advantages of Bayesian methods in the 
context of dynamic stochastic differential equations.2 
 
One of the main advantages of using these methods is that after the estimation is completed the modeler has 
access to (posterior) distributions for all relevant parameters (“betas” that link macro series with each other and 
key stats for distributional assumptions of the stochastic shocks). These objects provide a very useful and rich 
platform for robust, forward-looking, dynamic, and consistent simulations of all endogenous variables. 
 
 
 
 
 
 
 
 
 
 
  
                                                                 

1 Other techniques consider higher-order approximations in order to understand the effects of non-linear relationships. See Schmitt-Grohé and 
Uribe (2004) for quadratic approximation methods: Schmitt-Grohé S. and Uribe M., Solving Dynamic General Equilibrium Models Using a 
Second-Order Approximation to the Policy Function, Journal of Economic Dynamics & Control 28, 755–775, 2004. 
2 Fernández-Villaverde, J., The Econometrics of DSGE Models, SERIEs,1:3–49, 2010. 
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Figure 3. Bayesian estimation: prior assumptions (left) and posterior distributions for key parameters (right) 

 
Source: Moody’s Analytics 

 

Step 1.D: Use the estimated system to produce simulations for macro and financial series 
This critical step involves shocking the system to produce dynamic simulations out of sample. There are two 
sources of uncertainty that need to be considered: (a) shocks to original random variables in the model (e.g., 
policy surprises, productivity gains/losses, shocks to consumer preferences, etc.) and (b) the fact that estimated 
parameters are random variables (“coefficient uncertainty”). Statistical properties of the estimated parameters are 
derived from their posterior distributions. Here is where Bayesian methods have an advantage. Obtaining the 
posterior distributions allows a modeler to draw simulated values not only for residuals and shocks, but also for 
betas and other parameters.  
 
We estimate a workhorse DSGE model for the US economy in line with Smets and Wouters (2007).3 Throughout 
this exercise, we focus on nine consecutive quarters out-of-sample for the forecasting period (consistent with 
stress testing CCAR practices). These periods are labeled +Q1, +Q2, …, +Q9. (Note that this is simply our choice 
for this paper and not a preference over an approach that considers longer time-horizons.)  
 
Statistical properties of simulated macro series are illustrated in Figure 4. We include GDP growth, unemployment 
rate, and home price dynamics as leading indicators. But DSGE models produce between 20 and 30+ economic 
and financial series, depending on the specifics of the version of the model selected. Histogram (frequency 
densities) and box-plots help a modeler understand distribution properties of the simulated paths. Some charts 
contain blocks of simulations as x-axis categories. These blocks represent groups of scenarios according to their 
severity (see section 2 for a detailed explanation on how the scenarios get rank-ordered). Block 1 groups the 
most optimistic forecasts while Block 5 contains stressed scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
                                                                 
3 Smets, F. and Wouters R., Shocks and Frictions in US Business Cycles, European Central Bank Working Paper 
Series N 722, 2007. 
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Figure 4. Statistical properties for key economic factors 
 
Figure 4.1. GDP growth, % Q/Q 

 
Source: Moody’s Analytics 
 
Figure 4.2. Unemployment rate, % 
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Source: Moody’s Analytics 
 
  

0
.2

.4
.6

.8
D

en
si

ty

4 6 8 10 12 14 16
Unemployment Rate, %

Unemployment Rate, %: Density, all Quarters

4 6 8 10 12 14 16
Unemployment Rate, %

Unemployment Rate, %: Box-Plot, all Quarters
4

6
8

1
0

1
2

1
4

1
6

U
ne

m
pl

oy
m

e
n

t R
a

te
, %

+Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 +Q8 +Q9

Unemployment Rate, %: Forecasts per Quarter

4
6

8
1

0
1

2
1

4
1

6
U

ne
m

pl
oy

m
e

n
t R

a
te

, %

Block 1 Block 2 Block 3 Block 4 Block 5

Unemployment Rate, %: Over Scenario Blocks



  

 7 JUNE 2015 

Figure 4.3. Home price growth, % Q/Q 

 
Source: Moody’s Analytics 
 
The result is a full set of dynamic, stochastic, and forward-looking paths for macro and financial series. The 
equations used to derive these simulations rest on general equilibrium conditions, making the projections 
consistent across variables and over time. The forward-looking attribute rests on the fact that these scenarios will 
vary over the business cycle. The DSGE model gets re-estimated with new data and the forecasts are conditional 
on the starting point of the out-of-sample period. 
 
For notation purposes, let’s refer to a given scenario as “z,” wherein the vector Z contains the whole list of macro 
and financial series with values at all quarters-out-of-sample (+Q1 to +Q9). 

 
Step 2: Embedding the stochastic scenarios with a probability structure 
A natural next step is to derive probabilities and severities for the simulated scenarios. To achieve this goal, we 
develop a multi-factor rank-ordering mechanism that attributes severity according to 25+ dimensions of economic 
severity. The core macro variables that are part of the calculation are: GDP growth, unemployment rate, home 
price changes, consumption dynamics, investment profiles, interest rate movements, and inflation. For each of 
these series, we rank the scenarios according to several criteria: average and/or cumulative values over the 
scenarios, maximum/minimum targets, and volatilities (sigma vs. average). 
 
The algorithm produces a combined score that translates into a ranking for each scenario. The embedded 
statistical structure can be obtained by (a) calculating the severity of any scenario from the percentage of the 
simulations that score lower or higher (purely a rank ordering exercise) or (b) grouping scenarios based on fixed 
intervals for score values. All scenarios within a given cluster have the same probability, given by the relative size 
of the interval (number of scenarios in the cluster divided by the total number of simulations). 

We illustrate the rank-ordering process with the properties of three marginal loadings and show the distribution 
properties of the final, overall score. 
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Figure 5. Leading marginal scores: minimum GDP cumulative growth rates, maximum unemployment rate, 
maximum drop on home price growth 

 

 

 

Source: Moody’s Analytics 
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Figure 6. Statistical properties of the standardized overall score 

 

Source: Moody’s Analytics 

Step 2 provides us with a vector “p(z)” that has a single probability value per scenario. Note that it is not time-
dependent, as the scoring algorithm has considered information across all relevant macro series observed at all 
points in time. In other words, our stochastic shocks are represented as dynamic paths for a group of macro and 
financial series. Each path has an associated probability value p(z). 

Step 3: Connecting scenarios to risk parameters using stress testing satellite models 
The last step of the process consists of linking scenarios with credit and market risk parameters. The modeler can 
now leverage recent developments on stress testing methodologies. The financial industry has produced a vast 
literature on robust models that are able to calculate risk parameters conditional on any given macro scenario. 
Instead of simply running a handful of multi-period scenarios, we can run thousands of them through stress 
testing models and obtain conditional realizations for credit metrics. 

Simulations of credit risk parameters: US mortgage portfolio as a leading example	
Following the methodology described in Licari and Suárez-Lledó (2013), we leverage a vintage-PD model for US 
first mortgages to run through the rank-ordered macro simulations.4 The result is a set of dynamic paths for 
vintage PDs from +Q1 to +Q9 (results are illustrated in Figures 7 and 8). We need to emphasize that these PDs 
are not forecasted only for existing vintages, but also for loans in vintages that will be originated in the future, 
together with the level of forecasted volumes for these new originations. This is of particular importance when 
performing dynamic stress testing and multi-period portfolio credit analysis. Figure 8.2 presents the simulated PD 
values for a vintage of mortgages that gets originated in the first out-of-sample period (+Q1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
                                                                 
4 Licari, J. and Suárez-Lledó, J., Stress Testing of Retail Credit Portfolios, Risk Perspectives Magazine, 2013. 
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Figure 7. Historic vs. fitted PDs over age intervals – PD lifecycle (term-structure) 
 

 
 

 
Source: Moody’s Analytics 
 
 
Figure 8. Simulated PDs across quarters-out-of-sample (+Q1 to +Q9) 
 
Figure 8.1. Old/seasoned vintage 
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Source: Moody’s Analytics 

 
 

Figure 8.2. Future vintage (booked in the out-of-sample period – dynamic projection) 
 

 
 

 
Source: Moody’s Analytics 
 
The outputs of this exercise consist of simulated paths of conditional PDs (for each vintage in the mortgage 
portfolio and across all out-of-sample periods). These conditional PDs – combined with the probability vector p(z) 
– become the necessary inputs for running multi-period credit portfolio analysis. 
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Simulations of market risk parameters: interest rates and credit spreads as leading example	
We now study the translation of the stochastic scenarios into relevant mark-to-market metrics. Government bond 
yields and corporate credit spreads are presented as leading examples, following econometric techniques 
developed in Licari, Loiseau-Aslanidi, and Suárez-Lledó (2013).5 The modeling methods rest on a combination of 
principal component analysis and time-series estimation techniques.  
 
It is worth highlighting the dynamic behavior of simulated term-premiums (as a proxy for the yield curve slope), as 
illustrated in Figure 9.3. The simulations produce different shapes, including inverted curves (negative premiums) 
and severe scenarios with high values for the yield-curve slope. 
 
Figure 9. Simulated government bond yield curves  
 
Figure 9.1. Distributions of yields at +Q9 for different maturity points 
 

 
Source: Moody’s Analytics 

 
Figure 9.2. Yields over blocks of scenarios at +Q9 and over quarters-out-of-sample (+Q1 to +Q9) 

 

 
 

 
  
                                                                 
5 Licari, J., Loiseau-Aslanidi, O. and Suárez-Lledó, J., Modelling and Stressing the Interest Rates Swap Curve, Moody’s Analytics Working 
Paper, 2013. 
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Figure 9.3. Term-premium spreads (yield curve slope) at +Q9 

 

 
Source: Moody’s Analytics 
 
Corporate credit spreads are observed across financial and non-financial sectors. Within each sector, there is 
further segmentation across rating classes (Aaa, Aa, A, Bbb, Bb, and B) and maturities (3m, 1y, 3y, 5y, 7y, 10y, 
20y, and 30y). Statistical properties for simulated spreads are illustrated in Figure 10. 
 
Figure 10. Simulated corporate credit spreads – financials and non-financials – over rating classes and maturities 
 
Figure 10.1. Scatters of simulated spreads over scenarios at +Q5 
 

 
Source: Moody’s Analytics 
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Figure 10.2. Box plots of simulated spread curves at +Q5 
 

 
Source: Moody’s Analytics 

 
Figure 10.3. Box plots of simulated spreads, 5-year maturity, +Q1 to +Q9 
 

 
Source: Moody’s Analytics 

 
The methods described in this section provide a modeler with forward-looking, dynamic simulations for risk-free 
rates and credit spreads. These consistent projections together with their probabilities, p(z), represent the building 
blocks for mark-to-market risk assessments for traded credit portfolios. 

Concluding remarks	
In this article, we develop a dynamic framework for stochastic scenario generation. The proposed methodology 
sets the necessary inputs for dynamic stress testing and multi-period credit portfolio analysis.  

Of particular relevance is the ability to build (simultaneously) consistent projections for standard credit risk metrics 
and mark-to-market parameters within a single, unified environment. In other words, using stochastic dynamic 
macro models as the scenario foundation allows us to integrate conditional credit and market risk modeling. 
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