

Consumer & Retail Credit Forecasting: DFAST bank case study with Global Regulatory Requirements

Moody's Analytics Risk Practitioner Conference, October 26-28, 2014 in Scottsdale, AZ

Felix Jason Vega Head of US Impairment & Capital Demand Management fvega@barclaycardus.com Barclaycard | Credit Risk Office

Juan M. Licari, Ph.D. Head of Economic & Consumer Credit Analytics - EMEA juan.licari@moodys.com Moody's Analytics

#RPC14

Agenda

- Introductions
- Practical Case Study: Meeting business and global regulatory objectives
 - Forecasting & Stress Testing
 - Challenges around Regulatory Submissions
 - Gaining Value from the Exercise
- Consumer Credit Methodologies & Challenges
 - > Panel-data structures: vintage analysis as a leading example
 - Multi-period simulation techniques
 - > Optimal allocations
 - Reverse stress testing

Practical Case Study

United States vs. Europe – The Core Requirements of Stress Testing Regulations are Aligned Across Regions

	Europe	United Kingdom	United States
Regulatory Body	EBA / ECB / NCA ¹	BoE / PRA ¹	Federal Reserve
Coverage	Largest Eurozone/Significant Banks (approx. 128 banks)	Largest UK Banks & Building Societies	BHC&FBO ⁶ ; assets > than \$10bn (DFAST), \$50bn (CCAR)
Data Requirements / Reporting	Historical/AQR Data – Core (ADC, TR, CSV) & Additional (CSV) Templates ^{2,3}	FDSF ⁴ – Historical, Year-End Data & P/L Projections	FRY Reports – A/Q/M Data; P/L Projections
Modeling Approach	Bottom-Up & Challenger/Top- Down; Firms' Own Models	Bottom-Up /Granular; Firms' Own Models	Bottom-Up; Firms' Own Models; Dynamic Projections
Scenarios	Regulatory Baseline, Stress Scenario	Common Stress, Bespoke Firm Stress, Common Baseline	Baseline, Adverse, Severely Adverse; Firms' Scenarios
Disclosure	Public Disclosure of Results (Bottom-Up)	Public Disclosure of Results	Public Disclosure of Results
Frequency	Annual (2009-2011 EBA); 2014 (ECB)	Annual	Annual (regulator-led); semiannual (bank-led)
Corrective Measures / Use of Outputs	Recapitalization Plan	Input Capital Adequacy CRDIV & firms' PRA buffer; FPC Tool ⁵	Input Capital Plan, Approval by Fed; Dividend Planning,,etc.

Source – Moody's Analytics

1. European Banking Authority (EBA), European Central Bank (ECB), National Competent Authorities (NCA), Bank of England (BoE), Prudential Regulation Authority (PRA)

4.Firm Data Submission Framework (FDSF)

5. Financial Policy Committee (FPC); Capital Requirements Directive IV (CRD IV)

6. Bank Holding Companies (BHC), Foreign Banking Organizations (FBO)

^{2.}Asset Quality Review (AQR)

^{3.}Advanced data collection (ADC), Transparency (TR) and Calculation, Validation & Support (CSV) Templates

Engaging the Business

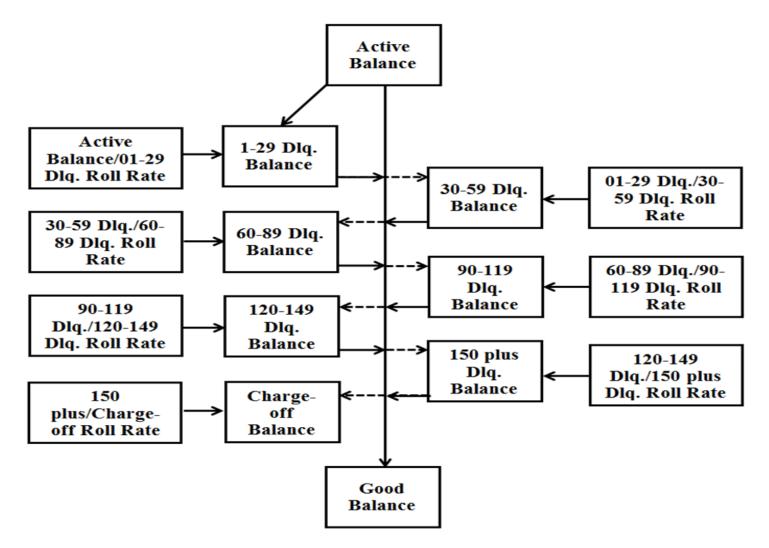
- Treat as a full business planning exercise, albeit one with highly pessimistic macroeconomic assumptions (akin to business continuity management)
 - Business Units "BAU" activities
 - Staffing Decisions / Collection Efforts
- Finance should take the lead role, though Risk may provide technical expertise and tools given additional modelling challenges
- Knowledgeable project manager should coordinate work streams
- Significant time should be invested in management actions, ensuring:
 - Actions are realistic given resource and operational constraints
 - Reaction time reflects reality and doesn't assume "benefit of foresight"
 - Customer impact is considered (avoid the sledgehammer)
- Existing mitigation impacts should be separated from new mitigants

Stress testing is a "whole business" exercise.

The Right Tools for the Job

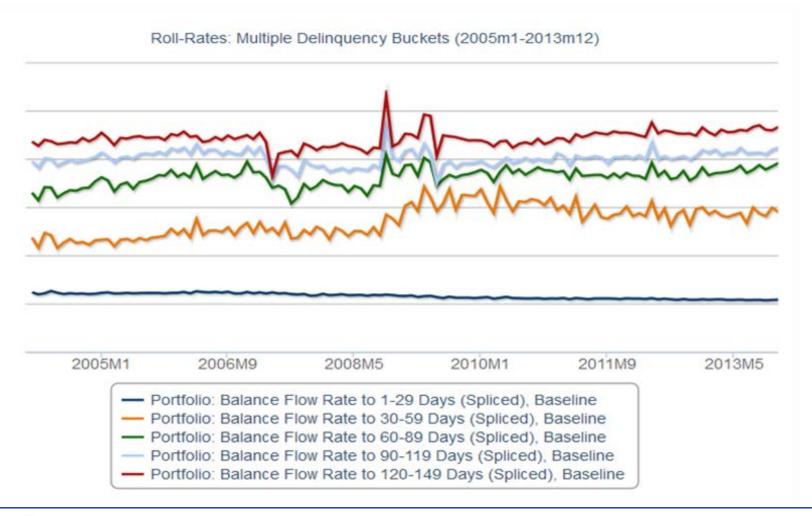
- Sophistication of modelling approach for a given portfolio should be driven by:
 - Portfolio materiality / activity
 - Data availability
 - Sensitivity
- Ideally a single consolidated model would capture all interrelated elements
- Acknowledge the limitations of any one modelling approach, triangulate
 - Top-down vs bottom-up
 - Analytical vs intuitive
 - Predictive vs experiential
- Model output must easily fit into current practices in the Institution
 - Business units manage portfolio with a roll-rate structure in mind
 - Business Units need accounts and Dollars forecasts
 - Business Units need segmentation: retail partnerships / risk levels

There is no one "best" approach.

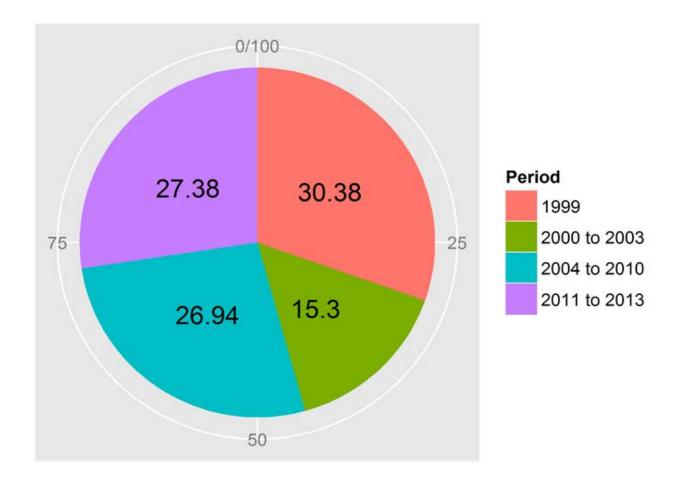

Gaining Value from the Exercise

- Building stress testing models will improve baseline models
- Discussing management actions under highly stressed scenarios improves response time to less severe situations and identifies operational deficiencies preventing effective responses
- Developing strong controls and processes for stress testing improves regular business planning activities
- Meeting rigorous external documentation requirements provides a sound framework for internal documentation
- Offers an opportunity to consolidate organizational knowledge
- Fully documented models
- Modelers support to key personal to ensure proper ownership of the model

Stress testing is a theoretical exercise with practical value.



Model Structure Diagram: A Vintage Approach



Model Output Portfolio Level Roll-Rates: Multiple Delinquency States

Great Variation in Vintages Sizes (as of 2013m12)

Charge-off Amount Across Segments

Case Study Summary

- Large Credit Card Business with footprint in different countries
 - Engaging the business
 - > Using the right tools
 - Gaining value from the exercise
- Unified methodology to forecast future performance and implement scenario analysis and stress testing exercises
 - > Transparency
 - > Unified methodology facilitates flow of information within the Institution
- On the other hand:
 - > Different Regulatory Environments, particularly around Stress Testing exercises
 - Specific Business Needs

Vintage Methodology and Stress Testing Challenges

Methodology: Dynamic Panel-Data Structure

Time series performance for a given vintage and segment

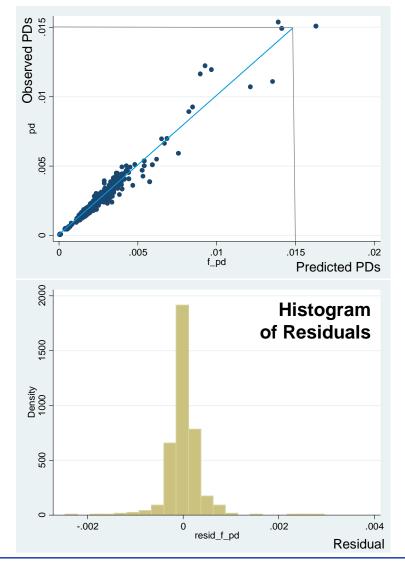
```
= f
```

(1) Lifecycle component

- » Dynamic evolution of vintages as they mature
- » Nonlinear model against "age"

(2) Vintage-quality component

- » Vintage attributes (LTV, asset class/collateral type, geography, etc.) define heterogeneity across cohorts
- » Early arrears serve as proxies for underlying vintage quality
- » Economic conditions at origination matter
- » Econometric technique accounts for time-constant, unobserved effect

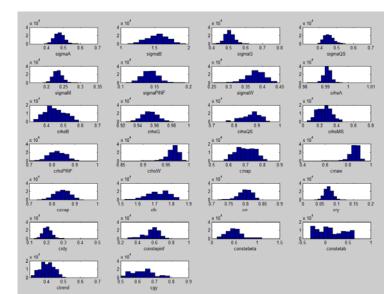

(3) Business cycle exposure component

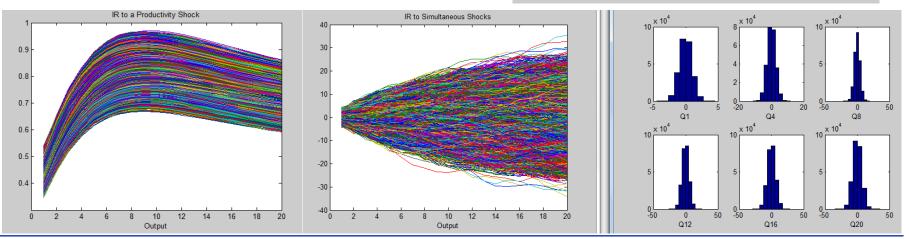
» Sensitivity of performance to the evolution of macroeconomic and credit series

US Auto PD Model – Fixed-Effects Panel Data Estimation

Source	ss	df	MS		Number of obs F(48, 416)	
Model	475.617452	48 9.9	0869691		F(48, 416) Prob > F	= 0.0000
Residual	5.67184058		3634232		R-squared	= 0.9882
					Adj R-squared	
Total	481.289292	464 1.0	3726141		Root MSE	= .11677
log_pd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
dummy_age_1	1.631347	.0473693	34.44	0.000	1.538234	1.72446
dummy_age_2	2.217711	.0805545	27.53	0.000	2.059367	2.376056
dummy_age_3	2.041324	.1159124	17.61	0.000	1.813477	2.269171
dummy_age_4	1.656777	.1465386	11.31	0.000	1.368728	1.944825
dummy_age_5	1.279536	.1661623	7.70	0.000	.9529135	1.606158
dummy_age_6	.9403923	.1689269	5.57	0.000	.6083356	1.272449
dummy_age_7	.6509373	.1515249	4.30 3.47	0.000	.3530873 .1808134	.9487873 .6537164
dummy_age_8						
dummy_age_9 dummy_age_10	.2342105 .1064866	.0842995	2.78	0.006	.0685044 .0016599	.3999166
Sage1	.4617167	.0382239	12.08	0.040	.3865806	.5368529
_Sage1	-2.43758	.7499189	-3.25	0.001	-3.911683	9634771
_Sage3	3.49146	1.867412	1.87	0.061	1792793	7.162199
_Sage4	.0557114	1.343793	0.04	0.967	-2.585759	2.697182
_Sage5	-2.24524	1.020941	-2.20	0.028	-4.252087	2383932
_Sage6	12.29499	5.932834	2.07	0.039	.6329204	23.95706
Sage7	-73.15822	17.33315	-4.22	0.000	-107.2297	-39.08674
qvintage						
338	.601827	.0729246	8.25	0.000	.4584803	.7451737
339	.5244618	.0729165	7.19	0.000	.3811311	.6677925
340	.4954991	.0730174	6.79	0.000	.35197	.6390282
341	.4845197	.0731541	6.62	0.000	.3407218	.6283175
342	.4445133	.0732872	6.07	0.000	.3004539	.5885728
343	.2103228	.0734188	2.86	0.004	.0660047	.3546408
344	.1467453	.0735917	1.99	0.047	.0020874	.2914032
345	.0346756	.0737311	0.47	0.638	1102564	.1796076
346	0674085	.0738179	-0.91	0.362	2125111	.0776941
347	2844975	.0739212	-3.85	0.000	4298031	1391919
348	4057279	.0740411	-5.48	0.000	5512692	2601866
349	2669378	.0741856	-3.60	0.000	4127632	1211124
350	1222775	.0743673	-1.64	0.101	26846	.0239049
351	2567755	.0745765	-3.44	0.001	4033692	1101818
352 353	2296637 2030854	.0748362 .0751339	-3.07 -2.70	0.002	376768 3507749	0825595 0553959
353	0445987	.0754846	-2.70	0.555	1929775	.1037801
355	1113241	.0758966	-1.47	0.143	2605128	.0378646
355	052321	.0764052	-0.68	0.494	2025093	.0978674
357	0819127	.0770081	-1.06	0.288	2332863	.0694609
358	.1114787	.077755	1.43	0.152	041363	.2643204
359	.0163052	.0786526	0.21	0.836	1383008	.1709113
360	.0436907	.0797796	0.55	0.584	1131306	.200512
361	.0318062	.0812167	0.39	0.696	12784	.1914524
362	.1373737	.0831042	1.65	0.099	0259829	.3007303
363	.1125562	.0856832	1.31	0.190	0558698	.2809822
364	.0530714	.0894275	0.59	0.553	1227147	.2288574
366	1760582	.1069851	-1.65	0.101	3863569	.0342406
367	1396401	.1361635	-1.03	0.306	4072943	.1280141
lbr	.0409895	.0049577	8.27	0.000	.0312443	.0507347
gdp	0543942	.0093621	-5.81	0.000	0727972	0359913
_cons	-9.938466	.076754	-129.48	0.000	-10.08934	-9.787592

Multi-period Simulation Analysis





Dynamic Macroeconomic Scenarios

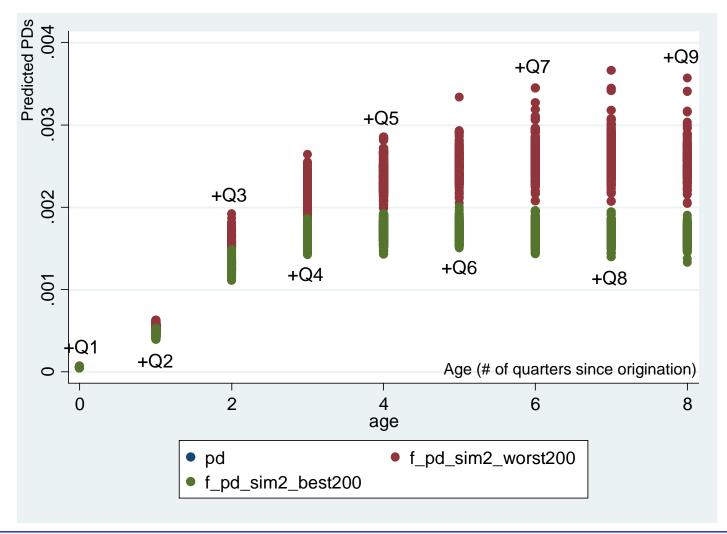
Bayesian Estimation – Prior & Posterior Distributions – Simulations

Parameter	Density	(1)	(2)	Parameter	Density	(1)	(2)
σ_{a}	InvGamma	0.10	2.00	$ ho_{_w}$	Beta	0.50	0.20
$\sigma_{_b}$	InvGamma	0.10	2.00	μ_p	Beta	0.50	0.20
$\sigma_{_g}$	InvGamma	0.10	2.00	μ_{w}	Beta	0.50	0.20
σ_i	InvGamma	0.10	2.00	Ψ	Beta	0.50	0.15
σ_r	InvGamma	0.10	2.00	ρ	Beta	0.75	0.10
$\sigma_{_p}$	InvGamma	0.10	2.00	Φ	Normal	1.25	0.12
$\sigma_{_w}$	InvGamma	0.10	2.00	r _y	Normal	0.12	0.05
$ ho_a$	Beta	0.50	0.20	$r_{\Delta y}$	Normal	0.12	0.05
$ ho_b$	Beta	0.50	0.20	ī	Normal	0.00	2.00
$ ho_{g}$	Beta	0.50	0.20	$\overline{\gamma}$	Normal	0.40	0.10
ρ_i	Beta	0.50	0.20	$ ho_{_{ga}}$	Beta	0.50	0.20
ρ_r	Beta	0.50	0.20	$\overline{\pi}$	Gamma	0.62	0.10
$ ho_p$	Beta	0.50	0.20	$100(\beta^{-1}-1)$	Gamma	0.25	0.10

MOODY'S ANALYTICS

Moody's Analytics Risk Practitioner Conference, October 26-28, 2014 in Scottsdale, AZ

 $f(\theta | x) = \frac{f(x | \theta) f(\theta)}{f(x)}$


Predicted PDs .0025 .003 2012Q3 Vintage at +Q5 Default Rate (#) over Simulations (ordered by macro ranking) Predicted PDs .003 .004 f_pd 002 +Q5 +Q3 +Q1 .0015 .002 2 +Q2 5000 10000 15000 20000 25000 0 sim2 +Q6 +Q4 Simulation ID - Ranked 00. +Q8 2500 2012Q3 Vintage at Age (# of quarters since origination) +Q5: Histogram of 0 2000 Default Rates (#) 5 15 0 10 age Density 1000 1500 f_pd_sim2_worst200 pd f_pd_sim2_best200 500 0 .0015 .002 .0025 .003 f_pd Predicted PDs

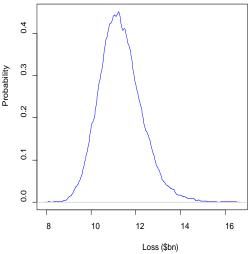
US Auto PD Model – Projections – 2012Q3 Vintage

US Auto PD Model – Projections – 2014Q3 Vintage

Dynamic Forecast – Example of PD Projections for a "Future" Vintage

MOODY'S

Optimal Asset Allocation



US Auto Lending – Multi-period Analytical Metrics Expected and Unexpected (Volatility) Losses

Period	EL (\$m)	Analytical Volatility (\$m)	Monte Carlo Volatility (\$m)	Cumulative EL (\$m)	Cumulative Analytical Volatility (\$m)	Cumulative Monte Carlo Volatility (\$m)	
Q1	1321	80.3	80.3	1321	80.3	80.3	
Q2	1322	96.2	96.4	2644	152.4	152.5	
Q3	1309	110.0	109.9	3953	235.2	235.5	Probability
Q4	1287	123.1	123.2	5239	329.6	329.7	<u>م</u>
Q5	1265	135.2	135.3	6503	436.0	436.1	
Q6	1243	145.5	145.6	7747	552.1	552.3	
Q7	1225	155.1	155.2	8972	677.3	677.4	
Q8	1210	164.6	164.7	10182	810.6	810.7	
Q9	1197	172.1	172.1	11379	950.3	950.4	

Portfolio Optimization

What is the portfolio composition n_i that minimises the portfolio loss volatility given a level of expected loss (and hence return) EL = L?

Using the Lagrange multipliers methodology:

 $\Lambda(n_i, \lambda) = \sigma(L; n_i) + \lambda(EL(n_i) - L)$

The efficient frontier can be calculated by solving the following system of equations:

$$n_i C_i + \lambda E L_i^* = 0$$

$$\sum_{i=1}^{N} n_i E L_i^* - L = 0$$

MOODY'S

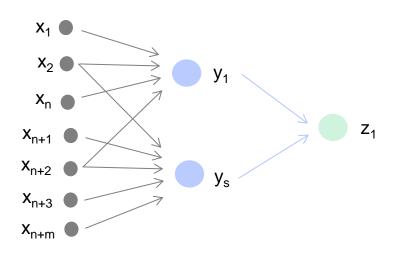
ANALYTICS

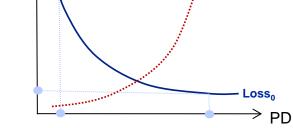
10 9 ORIGINAL ALLOCATIONS UNCOSTRAINED OPTIMA (Short-Selling) CONSTRAINED OPTIMA (No Short-selling) AUTO LOAN Portfolio Only MORTGAGE Portfolio Only CREDIT CARD Portfolio Only Return 4 3 1 Volatility 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Frontiers of Optimal Portfolios Original Allocations, Constrained (no short-selling) and Unconstrained Frontiers

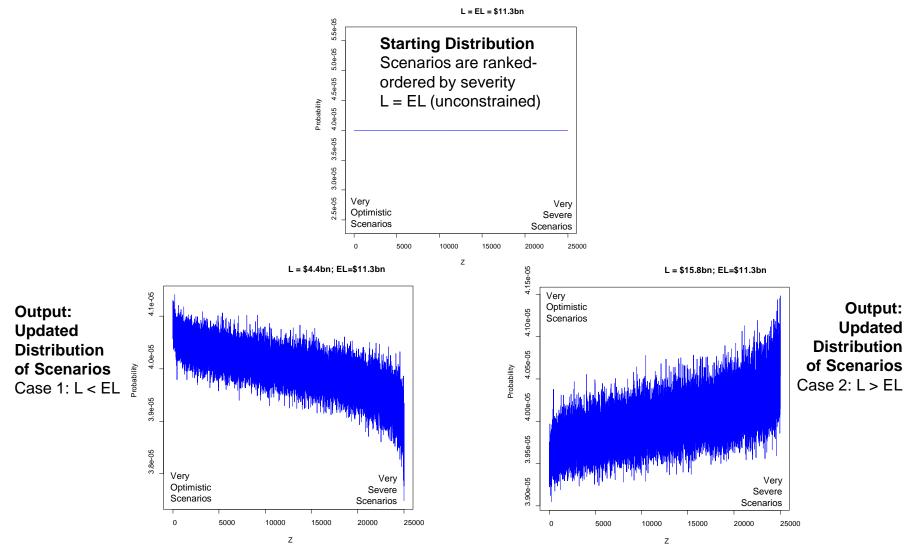
Extend the current framework to study DYNAMIC OPTIMIZATION (infinite horizon).
 Recursive Dynamic Programming (Bellman Equations) and the study of the optimal solutions to the underlying stochastic difference equations

Reverse Stress Testing




Reverse Stress Testing – Mathematical Challenges

The math behind reverse engineering of risk modeling



But $z1 \rightarrow \{y_1, y_2, ..., y_s\} \rightarrow \{x_1, x_2, ..., x_{n+m}\}$ opens the door to **multiplicity** LGD \uparrow \downarrow \downarrow LGD = f(PD)

Reverse Stress Testing – US Auto Lending Example

Moody's

ANALYTICS

Q&A

Moody's

moodysanalytics.com

To learn more about this topic:

- » Make an appointment to meet 1-1 with our experts in the Solutions Café:
 - Cris deRitis, Senior Director
 - Erlind Dine, Senior Product Strategist
 - Jeffrey Hollander, Solutions Specialist
 - Juan Licari, Senior Director
 - Tony Hughes, Managing Director

» Read related materials available in the RPC Mobile App:

- Designing Macroeconomic Scenarios for Stress Testing
- Is U.S. Auto Lending About to Bubble Over?

- » Attend related sessions taking place after this session:
 - Economic Scenario Generation for Stress Testing
 - Consumer and Retail Credit Forecasting
 - Cyclical Loss Volatility in Auto Lending

