Featured Product

    BoE Paper on Machine Learning Approach to Predict Financial Crisis

    January 03, 2020

    BoE published a working paper that details the early warning models developed for financial crisis prediction using machine learning techniques on macro-financial data for 17 countries over 1870–2016. The paper shows that machine learning models mostly outperform logistic regression in out‑of‑sample predictions and forecasting. Due to their greater flexibility, machine learning models have the advantage that they may uncover important non-linear relationships and variable interactions, which may be difficult to identify using classical techniques. The results help policy makers to identify the risk of financial crises in advance and potentially act on these signals.

    The paper describes the dataset and reviews literature on the variables that the authors choose as predictors. It then presents the benchmark logistic regression, outlines the methodology, and provides a brief description of the different machine learning models applied and the Shapley value framework. Next, the paper compares the predictive performance of all models and investigates the importance of the predictors using Shapley values. Finally, the paper looks at the robustness of indicators in a macro-prudential policy context and investigates in detail the role of the yield curve. 

    This paper shows that machine learning models outperform logistic regression in predicting financial crises on a macroeconomic data set covering 17 countries between 1870 and 2016 in both out-of-sample cross-validation and recursive forecasting. The gains in predictive accuracy justify the use of initially more opaque machine learning models. All models consistently identify similar predictors for financial crises, although there are some variations across time reflecting changes in the nature of the global monetary and financial system. While the crucial role of credit is an established result in the literature, the predictive power of the yield curve has obtained far less attention as an early warning indicator. The authors also inspect non-linearities and interactions identified by the machine learning models. Global credit shows a particularly strong non-linearity—only very high global credit growth beyond a certain point influences the prediction of the models. Interactions are particularly strong between global and domestic indicators.

    Overall, the findings suggest a combination of low risk perception, search-for-yield behavior, and strong credit growth in the years preceding a crisis. The results highlight the potential value of machine learning models for broader economic policy making in two key dimensions. First, the approach illustrates how machine learning techniques can uncover important non-linearities and interactions that facilitate superior out-of-sample prediction and forecasting even in situations characterized by relatively small data sets with limited observations of the event of interest. Second, the novel Shapley value approach demonstrates how the black box concern linked to the practical policy application of machine learning models may be overcome. By providing a mechanism to identify the key economic drivers of the predictions generated by such models, the approach allows insights from machine learning models to be integrated into a broader decision making framework while preserving the transparency and accountability of any resulting public policy decision.

     

    Related Link: Working Paper

     

    Keywords: Europe, UK, Banking, Machine Learning, Yield Curve, Financial Stability, Dataset, Research, Early Warning Model, Fintech, BoE

    Related Articles
    News

    EBA Updates Filing Rules for Supervisory Reporting

    The European Banking Authority (EBA) published version 5.1 of the filing rules for supervisory reporting.

    October 19, 2021 WebPage Regulatory News
    News

    ECB Amends Guideline on Procedures for Collection of AnaCredit Data

    The European Central Bank (ECB) Guideline 2021/1829 on the procedures for the collection of granular credit and credit risk data has been published in the Official Journal of European Union.

    October 19, 2021 WebPage Regulatory News
    News

    ECB Amends Guideline on Procedures for Collection of AnaCredit Data

    The European Central Bank (ECB) Guideline 2021/1829 on the procedures for the collection of granular credit and credit risk data has been published in the Official Journal of European Union.

    October 19, 2021 WebPage Regulatory News
    News

    EBA Publishes Standards on Disclosure of Investment Policy Under IFR

    The European Banking Authority (EBA) published the final draft regulatory technical standards on disclosure of investment policy by investment firms, under the Investment Firms Regulation (IFR).

    October 19, 2021 WebPage Regulatory News
    News

    APRA Finalizes Guidance for New Prudential Standard on Remuneration

    The Australian Prudential Regulation Authority (APRA) published the prudential practice guide CPG 511 to assist banks, insurers, and superannuation licensees in meeting requirements of CPS 511, the new prudential standard on remuneration.

    October 18, 2021 WebPage Regulatory News
    News

    OCC Updated LIBOR Self-Assessment Tool for Banks

    The Office of the Comptroller of the Currency (OCC) published a bulletin that provides an updated self-assessment tool for banks to evaluate their preparedness for cessation of the London Interbank Offered Rate (LIBOR).

    October 18, 2021 WebPage Regulatory News
    News

    TCFD Updates Guidance for Financial Disclosures on Climate Risk

    The Financial Stability Board (FSB) published a report that examines the progress made toward disclosures aligned with recommendations of the Task Force on Climate-related Financial Disclosures (TCFD).

    October 14, 2021 WebPage Regulatory News
    News

    BCBS Report Examines Progress on Adoption of Basel III Framework

    The Basel Committee on Banking Supervision (BCBS) published the progress report on adoption of the Basel III regulatory framework in member jurisdictions.

    October 14, 2021 WebPage Regulatory News
    News

    ACPR Implements Updates Related to DPM Version 3.1

    The French Prudential Supervisory Authority (ACPR) has implemented, in its information system, updates linked to the Data Point Model (DPM) version 3.1.

    October 14, 2021 WebPage Regulatory News
    News

    EBA Note Examines Transition Risks of Benchmark Rates

    The European Banking Authority (EBA) published a thematic note that aims to identify and raise awareness of the transition risks of benchmark rates, as the London Interbank Offered Rate (LIBOR) and the Euro Overnight Index Average (EONIA) are close to being phased out.

    October 14, 2021 WebPage Regulatory News
    RESULTS 1 - 10 OF 7571