Featured Product

    IMF Paper Examines Application of Machine Learning in Assessing Credit

    May 17, 2019

    IMF published a working paper on application of machine learning in assessing credit risk. This paper reviews the underlying challenges in assessing credit risk of particularly small borrowers and discusses the most prominent machine learning techniques applied in assessing credit risk of borrowers for a nontechnical audience.

    The paper examines potential strengths and weaknesses of machine-learning-based credit assessment by presenting core ideas and the most common techniques in machine learning for the nontechnical audience; it also discusses the fundamental challenges in credit risk analysis. The paper presents the main elements of prudent lending in the context of the five Cs of credit and agency problems.  The five Cs of credit are capacity, capital structure, coverage, character, and conditions. The paper also discusses main machine learning tools and techniques and examines the strengths and weaknesses of machine learning-based lending in contrast with the traditional methods. 

    The paper highlights that machine learning has certain weaknesses that should be taken into consideration when applying for credit risk assessment:

    • Heavy reliance on learning from data, particularly in a context where the size of the sample is considerably larger than traditional ways of credit scoring, could result in noisy information playing a role in driving results of credit analysis and leading to financial exclusion of creditworthy applicants. The bias in the sample should be identified and avoided by analysts as much as possible to avoid digital financial exclusion.
    • Machine learning may not capture structural changes in a timely manner, because arrival of informative data may be slow due to the lengthy process of default observation. This could negatively impact fintech lenders that rely on machine learning to assess borrowers without evaluating the relevance of data used for training the model for new applicants. 
    • Borrowers may realize and counterfeit certain indicators that drive their credit score, thus decreasing the relevance of those features for new applicants.
    • Machine learning is exposed to some of the key concerns in econometrics, most importantly the endogeneity and selection bias problem. The analyst should check the sample to ensure proper treatment of these issues and avoid superfluous results. Nonetheless, proper choice of risk drivers makes these issues less of a concern for credit risk assessment and default outcome prediction.

    Overall, the paper concludes that fintech credit has the potential to enhance financial inclusion and outperform traditional credit scoring by leveraging nontraditional data sources to improve the assessment of the borrower’s track record, appraising collateral value, forecasting income prospects, and predicting changes in general conditions. Nevertheless, the emerging market economies may face some challenges in reaping the benefits while ensuring that the development of fintech credit does not expose systemic risks to the financial system. Given the central role of data in machine-learning-based credit analysis, it should be legally and technologically possible to gather digitalized data reliably from various sources and avoid noisy and biased data as much as possible. As a complement for high-quality data availability, cyber-security measures should be in place because of the sensitivity of credit information. Moreover, the machine learning analysts should consistently review machine learning models for credit rating to avoid potential weaknesses of naive application of machine learning. 

     

    Related Link: Working Paper

     

    Keywords: International, Banking, Financial Inclusion, Fintech, Machine Learning, Credit Risk, Big Data, Systemic Risk, IMF

    Featured Experts
    Related Articles
    News

    BoE Consults on Approach to Setting MREL, Publishes Bail-In Guidance

    The Bank of England (BoE) published a consultation paper on approach to setting minimum requirement for own funds and eligible liabilities (MREL), an operational guide on executing bail-in, and a statement from the Deputy Governor Dave Ramsden.

    July 22, 2021 WebPage Regulatory News
    News

    EBA Seeks Views on Proportionality Assessment Methodology

    The European Banking Authority (EBA) is seeking preliminary input on standardization of the proportionality assessment methodology for credit institutions and investment firms.

    July 22, 2021 WebPage Regulatory News
    News

    US Agencies Propose Changes to Call Reports and Instructions

    Certain regulatory authorities in the US are extending period for completion of the review of certain residential mortgage provisions and for publication of notice disclosing the determination of this review until December 20, 2021.

    July 22, 2021 WebPage Regulatory News
    News

    PRA Finalizes Rulebook Definition of Higher Paid Material Risk-Taker

    The Prudential Regulation Authority (PRA) published the policy statement PS18/21, which introduces an amendment in the definition of "higher paid material risk taker" in the Remuneration Part of the PRA Rulebook.

    July 21, 2021 WebPage Regulatory News
    News

    EBA Examines Asset Encumbrance in Banking Sector

    The European Banking Authority (EBA) published its annual report on asset encumbrance in banking sector.

    July 21, 2021 WebPage Regulatory News
    News

    EBA Publishes Methodological Guide to Mystery Shopping

    The European Banking Authority (EBA) published a methodological guide to mystery shopping.

    July 21, 2021 WebPage Regulatory News
    News

    APRA Issues Update on Capital Reform Policy Settings for Banks

    The Australian Prudential Regulation Authority (APRA) released a letter to authorized deposit-taking institutions to provide an update on key policy settings for the capital framework reforms, which will come into effect from January 01, 2023.

    July 21, 2021 WebPage Regulatory News
    News

    CPMI-IOSCO Assess Continuity Planning of Market Infrastructures

    The Committee on Payments and Market Infrastructures (CPMI) and the International Organization of Securities Commissions (IOSCO) published a report that assesses the business continuity planning activities of financial market infrastructures or FMIs.

    July 21, 2021 WebPage Regulatory News
    News

    BoE Announces Changes to Validation Rules for Form BTL

    The Bank of England (BoE) published questions and answers (Q&A) on OSCA to BEEDS migration for statistical reporting as well a presentation from the project overview session held with statistical reporters.

    July 20, 2021 WebPage Regulatory News
    News

    BCBS Proposes Changes to Process for Reviewing G-SIB Methodology

    The Basel Committee on Banking Supervision (BCBS) is consulting on a technical amendment to the Basel Framework to reflect a new process reviewing the global systemically important bank (G-SIB) assessment methodology.

    July 20, 2021 WebPage Regulatory News
    RESULTS 1 - 10 OF 7281