MODELING METHODOLOGY

Moody’s CreditCycle
Reverse Stress Testing Capabilities

Authors
Juan M. Licari, Ph.D.
juan.licari@moodys.com
Senior Director

José Suárez-Lledó, Ph.D.
jose.suarez-lledo@moodys.com
Associate Director

Barnaby Black
barnaby.black@moodys.com
Assistant Director

Contact Us

Email:
help@economy.com

Phone:
Europe
+44.20.7772.5454
U.S./Canada
+1.866.275.3266
Asia Pacific
+852.3551.3077
All Others
+1.610.235.5299

Web:
www.economy.com
Reverse Stress Testing Challenges

The Financial Services Authority defines reverse stress tests as "tests that require a firm to assess scenarios and circumstances that would render its business model unviable, thereby identifying potential business vulnerabilities. Reverse stress-testing starts from an outcome of business failure and identifies circumstances where this might occur. This is different to general stress and scenario testing which tests for outcomes arising from changes in circumstances."

At its core, reverse stress testing proposes to "invert" the standard process, starting now from an “outcome” (business failure) with the aim of finding potential states-of-nature (scenarios) consistent with such an outcome. When implementing RST in a quantitative way, multiplicity emerges as a challenge. The same outcome (say, high expected losses or liquidity shortfall) could materialise under multiple combinations of risk factors (say, PDs, EADs and LGDs) and alternative macroeconomic scenarios.

We categorize the multiplicity into:

Type-1 multiplicity: Indeterminacy

In most RST frameworks we have a large number of risk and macroeconomic variables to match with a limited number of objectives/assumptions; i.e., more variables than equations. This indeterminacy issue can be resolved via a combination of (a) additional ad-hoc assumptions on some parameters (expert-judgment, market-wide assumptions, or values in line with regulatory guidelines), and/or (b) additional equations based on empirical findings, and/or (c) reducing the number of risk and macro factors that define a scenario while keeping its shape. The aim is to close the “degree of indeterminacy” to zero and end up with as many equations as unknowns.

Avenues to "close" the degree of indeterminacy to zero:
1) Additional equations.
2) Ad-hoc values for risk parameters: based on market information, expert judgment and/or regulatory guidelines.
3) Lower the dimension of the scenario and risk parameter spaces: The use of “factor analysis”.
Type-2 multiplicity: Properties on an inverse mapping

Even after we have closed the gap between equations and unknowns, a key challenge emerges when trying to reverse engineer a process: The inverse of a function may not behave as a function. Consider a stressed value of the risk factors x_0, that is mapped to a vector of outcomes y_0, such that $\Phi(x_0, y_0) = 0$. Mapping y_0 back (i.e., reverse engineering the process) could give us a value of x that is different from x_0. There may exist another vector x_1 that is consistent with the same outcome, $\Phi(x_1, y_0) = 0$. Some key properties of the mapping Φ will help us ensure that (at least locally) one can “safely” invert the process.
Reverse Stress Testing in Practice

To deal with type-1 multiplicity we propose the use of “factor analysis”. To ensure that these factors can still have a meaningful “interpretation” we link them to well-known macroeconomic series. The takeaway of this exercise is that intuition can still be kept on the nature of the scenarios while the underlying dimension of the indeterminacy has been dramatically reduced. The modeller now has a better chance of matching the number of equations to the number of risk and macro parameters. To handle type-2 multiplicity we make use of linear algebra techniques to provide structure on the stress-testing process that will allow us to carry RST exercises for linear models (and any nonlinear monotonic transformations of them—such as logarithmic and logistic).

Step 1: Factor Analysis to reduce the dimension of the parameter and scenario spaces
Examples of factor analysis on key US macroeconomic series

Reverse Stress Testing: US factor analysis

Reverse Stress Testing: US factor analysis

US factor analysis—25 macroeconomic series

<table>
<thead>
<tr>
<th>Factor</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td>0.732734</td>
<td>0.001767</td>
<td>0.672256</td>
<td>0.672256</td>
</tr>
<tr>
<td>Factor 2</td>
<td>0.078629</td>
<td>0.078629</td>
<td>0.070642</td>
<td>0.742900</td>
</tr>
<tr>
<td>Factor 3</td>
<td>0.069485</td>
<td>0.069485</td>
<td>0.068768</td>
<td>0.811668</td>
</tr>
<tr>
<td>Factor 4</td>
<td>0.047073</td>
<td>0.047073</td>
<td>0.045073</td>
<td>0.856741</td>
</tr>
<tr>
<td>Factor 5</td>
<td>0.039510</td>
<td>0.039510</td>
<td>0.037510</td>
<td>0.894251</td>
</tr>
<tr>
<td>Factor 6</td>
<td>0.038941</td>
<td>0.038941</td>
<td>0.037941</td>
<td>0.932192</td>
</tr>
<tr>
<td>Factor 7</td>
<td>0.038184</td>
<td>0.038184</td>
<td>0.037184</td>
<td>0.970376</td>
</tr>
<tr>
<td>Factor 8</td>
<td>0.034593</td>
<td>0.034593</td>
<td>0.033593</td>
<td>0.994969</td>
</tr>
<tr>
<td>Factor 9</td>
<td>0.031052</td>
<td>0.031052</td>
<td>0.029052</td>
<td>0.996021</td>
</tr>
<tr>
<td>Factor 10</td>
<td>0.029598</td>
<td>0.029598</td>
<td>0.027598</td>
<td>0.998619</td>
</tr>
<tr>
<td>Factor 11</td>
<td>0.028155</td>
<td>0.028155</td>
<td>0.026155</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 12</td>
<td>0.026810</td>
<td>0.026810</td>
<td>0.024810</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 13</td>
<td>0.025566</td>
<td>0.025566</td>
<td>0.023566</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 14</td>
<td>0.024322</td>
<td>0.024322</td>
<td>0.022322</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 15</td>
<td>0.023078</td>
<td>0.023078</td>
<td>0.021078</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 16</td>
<td>0.021834</td>
<td>0.021834</td>
<td>0.020834</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 17</td>
<td>0.020590</td>
<td>0.020590</td>
<td>0.019590</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 18</td>
<td>0.019346</td>
<td>0.019346</td>
<td>0.018346</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 19</td>
<td>0.018102</td>
<td>0.018102</td>
<td>0.017102</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 20</td>
<td>0.016858</td>
<td>0.016858</td>
<td>0.015858</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 21</td>
<td>0.015614</td>
<td>0.015614</td>
<td>0.014614</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 22</td>
<td>0.014370</td>
<td>0.014370</td>
<td>0.013370</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 23</td>
<td>0.013126</td>
<td>0.013126</td>
<td>0.012126</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 24</td>
<td>0.011882</td>
<td>0.011882</td>
<td>0.010882</td>
<td>0.999874</td>
</tr>
<tr>
<td>Factor 25</td>
<td>0.010638</td>
<td>0.010638</td>
<td>0.009638</td>
<td>0.999874</td>
</tr>
</tbody>
</table>

(Chi Test: Independent vs. Saturated: Chi(299) = 1516.85 Probability = 0.0000)
Examples of factor analysis on key market and credit risk parameters

Reverse Stress Testing: Correlation of Equity Indexes

Because of the high cross-correlation, we can reduce the modelling space from the 8 original variables to 1 (unobserved) principal component...

Variability Explained, %

One single principal component explains 91% of the original variability

Reverse Stress Testing: CDS Spreads

Use factor analysis for forecasting CDS spreads: Global Non-Financial Corporates for Moody’s rating buckets (Aaa, Aa, A, Baa, Ba, B, Caa)

Reverse Stress Testing: Portfolio Simulations

Linking Factors’ Realizations to Macro Scenarios

Step 2: From Factors to Scenarios

Mapping factor realizations or specific risk parameter levels to macro scenarios can be done through simulation, scenario-development, or sensitivity-analysis. All these techniques can be implemented in Moody’s Credit Cycle and are described in the next section of the document.
Reverse Stress Testing Techniques into Moody's CreditCycle

Moody's CreditCycle model characteristics table (modelling code) allows users to modify the following:

1. The variables to model,
2. Transformation of the variables to model,
3. Variables to include in equations for modelling (right-hand side drivers),
4. Estimation technique to apply to each model,
5. Estimation technique options,
6. Constraints to apply to model estimation,
7. Cubic spline knots for modelling the age component,
8. Length of validation window for out-of-sample testing,
9. Open code functionality.

The open code functionality of our platform—point (9) above—gives users the option to write a range of commands whilst running the model estimations. This functionality is located on the model characteristics table, where there are three lines for open code prior to model estimation and three lines post-model estimation.

The format of the code to type in the CODE BEFORE EQUATIONS and CODE AFTER EQUATIONS lines is as follows:

variables constraints, cmd(command)

where command is the specific command requested (from list below), the variables are any specified variables within the model (note the first one specified in regression commands is the independent variable) and constraints are any requested constraints for the command (i.e. if segment==100)—this can be left blank if no constraints required.

The commands available for populating the CODE BEFORE EQUATIONS and CODE AFTER EQUATIONS lines are:

- **gen** – generate a new variable (age24=1 if age==24, cmd(gen))
- **egen** – generate a variable from multiple variables (vt_var=group(qvintage qtime), cmd(egen))
- **collapse** – make a dataset of summary statistics (default_rate_orig, cmd(collapse))
- **replace** – replace contents of existing variable (y5=1 if stock_default !=, cmd(replace))
- **summarize** – provide summary statistics (default_rate_orig if segment==100, cmd(summarize))
- **sort** – sort data by given variables (segment qvintage qtime, cmd(sort))
- **cap drop** – drop variables if exist (drop testvar, cmd(cap))
- **tsset** – declare data to be time series data (cross_section seg_qv qtime, cmd(tsset))
- **pca** – principal component analysis (default_rate_orig age if segment==100, cmd(pca))
- **corr** – correlation analysis (default_rate_orig age if segment==100, cmd(corr))
- **tab** – tabulate data (age if segment==100, cmd(tab))
- **var** – vector autoregressive models (default_rate_orig if segment==100 & qvintage==150, cmd(var))
- **predict** – obtain predictions after estimation (reg_values, cmd(predict))
- **estat** – provides post-estimation statistics (vce, cmd(estat))
Step 1: Factor Analysis
The **pca** command helps the modeller achieve the reduction in the scenario and parameter spaces. This tool will help the modellers overcome the type-I multiplicity challenge in reverse stress testing.

Step 2: From factors to scenarios: Model development/estimations, simulations and scenario analysis
The user can create models to link the factors to risk parameters in order to fulfill the RST goals.

After estimating a model in Moodys' CreditCycle, the analyst can also run MonteCarlo or bootstrapping simulations. This can be done for time-series models (e.g., after the **var** command) or for other standard regression techniques (**regress, iregress, qreg, logit, probit, etc.**). The model characteristics table in CreditCycle allows users to select the model estimation technique (see below example). All fields ending in REG_TECH relate to the regression technique applied to that specific equation. Regression techniques available within CreditCycle include standard estimation techniques, discrete choice models, time series models and panel data techniques.

The table below shows the model statistics associated with the linear regression performed. These statistics can be viewed with all regression techniques.

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>15973.963</td>
<td>126</td>
<td>126.777484</td>
</tr>
<tr>
<td>Residual</td>
<td>1350.538</td>
<td>1349</td>
<td>1.00113848</td>
</tr>
<tr>
<td>Total</td>
<td>17324.4988</td>
<td>1475</td>
<td>11.7454229</td>
</tr>
</tbody>
</table>

Similarly model statistics and coefficients can be viewed on the Last Run file that logs model estimations.

- **Number of obs = 1476**
- **F(126, 1349) = 126.63**
- **Prob > F = 0.0000**
- **R-squared = 0.9220**
- **Adj R-squared = 0.9148**
- **Root MSE = 1.0006**
Examples of Estimation Techniques:

Quantile Regression

qreg - The qreg command fits quantile (including median) regression models, also known as least-absolute-value models (LAV or MAD) and minimum L1-norm models. There is an option associated with quantile regression for modifying the asymmetry parameter. This is a parameter in quantile regression that weights the possibly distinct costs of under-prediction and over-prediction. With this parameter set to 0.5, positive and negative errors are weighted equally. When the asymmetry parameter is 0.5 our best predictor is the median; it does not give as much weight to outliers. When the asymmetry parameter is 0.7, the loss is asymmetric; large positive errors are more heavily penalized than negative errors.

XTREG Regression (FE, RE & MLE Option)

The xtreg command is a regression technique that allows FE, RE & mle options. The mle option maximises the log-likelihood function. The FE option allows the regression to use a fixed effects estimator, whilst the RE option allows the regression to use a random effects estimator.

Discrete Choice Models (PROBIT & LOGIT Commands)

Discrete choice models are appropriate where there is dichotomy in the required dependent variable. These models can be utilised if loan-specific data is provided (i.e. modelling a default indicator) or alternatively a vintage level indicator (i.e. default rate > 3%).

probit - The probit command fits a maximum-likelihood probit model (binary regression).

logit - The logit command fits a maximum-likelihood logit model (logistic regression).

Nested Regression (The NESTREG Command)

NESTREG – fits nested models by sequentially adding blocks of variables and reports comparison tests between the nested models.

Vector Autoregression (The VAR Command)

The VAR command fits a multivariate time-series regression of each dependent variable on lags of itself and on lags of all other dependent variables. VAR also fits a variant of vector autoregressive (VAR) models known as the VARX model, which also includes exogenous variables.

ARIMA Modelling (The ARIMA Command)

The ARIMA command fits univariate models with time-dependent disturbances. ARIMA fits a model of dependent variable on independent variables where the disturbances are allowed to follow a linear autoregressive moving-average (ARMA) specification. The dependent and independent variables may be differenced or seasonally differenced to any degree. When independent variables are included in the specification, such models are often called ARMAX models; and when independent variables are not specified, they reduce to Box-Jenkins autoregressive integrated moving-average (ARIMA) models in the dependent variable. Multiplicative seasonal ARIMA and ARMAX models can also be fit.

Arellano-Bond Estimation (The XTABOND Command)

Linear dynamic panel-data models include p lags of the dependent variable as covariates and contain unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level effects are correlated with the lagged dependent variables, making standard estimators inconsistent. Arellano and Bond (1991) derived a consistent generalized method of moments (GMM) estimator for the parameters of this model; XTABOND implements this estimator. This estimator is designed for datasets with many panels and few periods, and it requires that there be no autocorrelation in the idiosyncratic errors. For a related estimator that uses additional moment conditions, but still requires no autocorrelation in the idiosyncratic errors, use XTDPSYS. For estimators that allow for some autocorrelation in the idiosyncratic errors, at the cost of a more complicated syntax, use XTDPD.

The properties window (below) for each modeled equation in CreditCycle shows a summary of statistics regarding model performance. Alternatively for checking the in-sample fit, the residuals can be plotted to ensure there is random performance across time / age / vintage. A series for the residuals can be coded by writing residuals=xname-name, cmd(gen) using the open code functionality available on the model characteristics table (where name is the name of the field being modeled).
The in-sample fit can also be observed by graphing the spliced and modeled series together. The below example shows the actuals (spliced series) against model (fitted series) for three vintages across age.

Figure 1: Fitted values (solid) vs. actual data (dotted)

Figure 2: Example of in-sample and residual analysis
UK commercial real estate returns, model fit (left) and residual distribution (right)
Having identified the severity of the shocks through the risk models (credit, market or liquidity) the final step consists of linking those vectors to macro series.

Macroeconomic Data and Scenarios

Macroeconomic data is embedded into the system and can be automatically updated from the platform, linked to Moody’s Analytics baseline and alternative scenario databases. We cover all major countries with national and sub-national level data. All scenarios are updated on a monthly basis, allowing the modellers to have access to the most current economic and credit trends available. Moreover, the modellers can bring their own economic series and assumptions and run them through the models. Moody’s CreditCycle can forecast the models under multiple economic scenarios simultaneously and scenarios can be duplicated. The platform can host several countries into a single work-file, allowing the user to compare portfolios across geographic regions.

Figure 4 – Economic scenario chart examples, real wage growth, France, history + alternative scenarios
Reverse Stress Testing: A Hybrid Approach

1. Stress on Business Model
2. Qualitative Analysis: Key Risks
3. Potential Scenarios
4. Time Series of Macro & Financial Series
5. Implement scenarios into Risk Management Tools
6. Calculate Losses, Capital and Liquidity
7. Contingency Planning

After the identification of the multiple scenarios that could fit the RST starting "outcome", the final stage should consist of a serious analysis regarding the potential "actions" to be taken to prepare for such an event. The diagram below illustrates the whole RST process, concluding on stage 7, "Contingency Planning".

Figure 5 – Economic scenario chart examples, unemployment rate, France, history + alternative scenarios
Appendix 1. Multiplicity from a Mathematical Viewpoint

Mathematical Setup

Consider the standard stress-testing process (ST) as a "mapping" from scenarios and risk parameters: \(x \in \mathbb{R}^n \), into outcomes: \(y \in \mathbb{R}^m \), such that a set of conditions is satisfied: \(\Phi(x, y) = 0 \). The mapping \(\Phi : X \times Y \rightarrow \mathbb{R}^m \) represents the system of equations that links scenarios, risk parameters and outcomes. The stress-testing task can be described as follows: For a given stressed scenario and its associated risk parameters, \(\hat{x} \in \mathbb{R}^n \), find the corresponding outcomes, \(\hat{y} \in \mathbb{R}^m \), such that \(\Phi(\hat{x}, \hat{y}) = 0 \). This standard process is built so that there are as many equations as unknowns: The dimension of \(y \) coincides with the dimension of the range of the \(\Phi \) system. But in practice, the number of scenarios and risk parameters tends to be greater than the number of equations: \(N \geq M \). Using the previously defined notation, the reverse stress-testing (RST) process will consist of: (i) starting from the extreme output/outcome, \(\hat{y} \in \mathbb{R}^m \), (ii) find those potential scenarios and risk parameters, \(\hat{x} \in \mathbb{R}^n \), (iii) such that \(\Phi(\hat{x}, \hat{y}) = 0 \).

A useful definition is that of a "projection function": \(\pi_x : X \times Y \rightarrow X \) with \(\pi_x(x, y) = x \); \(\forall (x, y) \) such that \(\Phi(x, y) = 0 \). Similarly, \(\pi_x(x, y) = y \). Using this concept, the ST process is defined as: (a) given \(\hat{x} \in \mathbb{R}^n \), (b) find \(\hat{y} \in \mathbb{R}^m \) such that (c) \(\hat{y} \in \pi_x(\pi^{-1}_x(\hat{x})) \). The RST process is therefore: (i) for an outcome \(\hat{y} \in \mathbb{R}^m \), (ii) find \(\hat{x} \in \mathbb{R}^n \) such that (iii) \(\hat{x} \in \pi_x(\pi^{-1}_x(\hat{y})) \). As a mapping/correspondence, RST consists of the following composite formula: \(\pi_x \circ \pi^{-1}_x \).

In practice, the \(\pi^{-1}_x \) relationship is typically well-behaved: Every value of \(x \) is associated with a single outcome \(y \). But \(\pi^{-1}_x \) can consist of multiple values of \(x \). Studying the properties of \(\pi^{-1}_x \) is at the core of the understanding of the RST process.

1.1: Type-1 Multiplicity: Indeterminacy

In most RST frameworks, we are faced with the task of matching a large number of risk and macroeconomic variables with a limited set of assumptions: \# variables > \# equations, or \(N > M \). Indeterminacy takes the form of a continuum of solutions (scenarios and risk parameters) whose mathematical properties will help the modeller identify avenues to close the extra degrees of freedom.

In formal terms: if \(N > M \), then shape of the solution set \(\hat{X} = \{ x \in X ; x \in \pi_x(\pi^{-1}_x(\hat{y})) \} \) will depend on the mathematical properties of the \(\Phi \) system (and therefore the \(\pi^{-1}_x \) mapping). Under some "regularity" conditions on \(\Phi \) (e.g., sufficient conditions to satisfy the assumptions for the implicit function theorem) the solution set \(\hat{X} \) is a smooth-manifold of dimension \(N - M \). In other words, there exists a continuum of scenarios and risk parameters (set \(\hat{X} \)) that are consistent with the original outcome \(\hat{y} \in \mathbb{R}^m \).

This indeterminacy needs to be dealt with before any further attempt to successfully reverse engineer the process. Solutions will require (a) additional ad hoc assumptions on some parameters (expert judgment, market-wide assumptions or values in line with regulatory guidelines), and/or (b) additional equations based on empirical findings; e.g., \(LGD = f(PD) \), and/or (c) reducing the number of risk and macro factors that define a scenario while keeping its shape. The end goal is to close the “degree of indeterminacy” to zero and end up with as many equations as unknowns.

1.2: Type-2 Multiplicity: Inverse Mapping

Even after closing the gap between equations and unknowns (\(N - M = 0 \)), a new challenge emerges when trying to reverse engineer the ST process: The inverse of a function may not behave as a function. Consider a stressed value of the risk factors, \(x_0 \), that is mapped to a vector of outcomes, \(y_0 \), such that \(\Phi(x_0, y_0) = 0 \). Mapping \(y_0 \) back (i.e., reverse engineering the process) could give us a value of \(x \) that is different from \(x_0 \). There may exist another vector \(x \) that is consistent with the same outcome \(\Phi(x, y_0) = 0 \). Specific characteristics of the ST system \(\Phi \) will help us ensure that (at least locally) one can "invert" the process and obtain a reliable RST mapping \(\pi_x \circ \pi^{-1}_x \). Applications of results such as "Inverse Function" and "Implicit Function" theorems will help us understand the shape of the solution-set \(\hat{X} = \{ x \in X ; x \in \pi_x(\pi^{-1}_x(\hat{y})) \} \). Under some "regularity" conditions on \(\Phi \) the set \(\hat{X} \) is a zero-dimensional smooth-manifold (set of isolated points). Moreover, each point in \(\hat{X} \) locally maps (a) \(X \rightarrow Y \) through \(\pi_x \circ \pi^{-1}_x \) (stress testing) and (b) \(Y \rightarrow X \) through \(\pi_x \circ \pi^{-1}_x \) (reverse stress testing) in a one-to-one (and unique) smooth fashion (overcoming type-2 multiplicity).
About the Authors

Dr. Juan M. Licari
Juan M. Licari is a senior director at Moody’s Analytics and the head of the Credit Analytics team for EMEA. Dr. Licari’s team provides consulting support to major industry players, builds econometric tools to model credit phenomena, and implements several stress-testing platforms to quantify portfolio risk exposure. His team is an industry leader in developing and implementing credit solutions that explicitly connect credit data to the underlying economic cycle, allowing portfolio managers to plan for alternative macroeconomic scenarios. The team is also responsible for generating monthly economic outlooks and alternative forecasts for EMEA. Juan is actively involved in communicating the team’s research and methodologies to the market. He often speaks at credit events and economic conferences worldwide. Dr. Licari holds a PhD and an MA in economics from the University of Pennsylvania and graduated summa cum laude from the National University of Córdoba in Argentina.

Dr. José Suárez-Lledó
José Suárez-Lledó is an associate director at Moody’s Analytics based in London. As part of the Credit Analytics team he designs retail and corporate credit models as well as macro-econometric models for key economic and financial variables. Before joining Moody’s Analytics, Jose held a research position at the Universidad Autónoma de Barcelona, where he developed models for illiquid financial markets and the dynamics of asset prices and credit. Jose holds a PhD and an MA in Economics from the University of Pennsylvania.

Barnaby Black
Barnaby Black is an assistant director at Moody’s Analytics in London. As a quantitative modeller within the Credit Analytics team he designs and implements risk models that are used in stress testing and forecasting exercises. Before joining Moody’s Analytics, Barnaby has previously worked for Barclays Bank & The Co-operative Banking Group building impairment and capital models, including extensive work on forecasting and stress testing. Barnaby holds an MSc in Operational Research from the University of Southampton.
About Moody’s Analytics

Economic & Consumer Credit Analytics

Moody’s Analytics helps capital markets and credit risk management professionals worldwide respond to an evolving marketplace with confidence. Through its team of economists, Moody’s Analytics is a leading independent provider of data, analysis, modeling and forecasts on national and regional economies, financial markets, and credit risk.

Moody’s Analytics tracks and analyzes trends in consumer credit and spending, output and income, mortgage activity, population, central bank behavior, and prices. Our customized models, concise and timely reports, and one of the largest assembled financial, economic and demographic databases support firms and policymakers in strategic planning, product and sales forecasting, credit risk and sensitivity management, and investment research. Our customers include multinational corporations, governments at all levels, central banks and financial regulators, retailers, mutual funds, financial institutions, utilities, residential and commercial real estate firms, insurance companies, and professional investors.

Our web and print periodicals and special publications cover every U.S. state and metropolitan area; countries throughout Europe, Asia and the Americas; and the world’s major cities, plus the U.S. housing market and other industries. From our offices in the U.S., the United Kingdom, and Australia, we provide up-to-the-minute reporting and analysis on the world’s major economies.

Moody’s Analytics added Economy.com to its portfolio in 2005. Its economics and consumer credit analytics arm is based in West Chester PA, a suburb of Philadelphia, with offices in London and Sydney. More information is available at www.economy.com.