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ABSTRACT 

This paper proposes a theoretical framework to account for systematic risk in recovery 

and to address the correlation between the firm’s underlying asset process and recovery. 

Under the proposed framework, the expected value in default under the risk neutral 

measure can be expressed as a linear function of the expected value under the physical 

measure. This allows for a simple mapping between expected recovery observed in the 

data and a measure that can be applied when using risk neutral valuation methods. When 

calibrating the model to parameters observed in the data, the risk neutral adjustment 

results in spreads that are 14% higher for a typical bond, and over 30% higher in some 

cases. When validating against market data, the evidence suggests that market spreads 

reflect systematic risk in recovery. We found that approximately 80% of our sample was 

estimated with a lower absolute error when using the risk neutral adjustment to compute 

model implied spreads. 
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1 INTRODUCTION 

Recovery in the event of default is closely tied to macroeconomic conditions and a firm’s credit quality (see, for 
example, Gupton and Stein (2005)). As shown in Figure 1, recovery is generally pro-cyclical. During expansion, 
recovery tends to be higher than during market downturns. Similarly, there is a positive correlation between a firm’s 
credit quality and recovery even after conditioning on macroeconomic effects; expected recovery is higher for high 
credit-quality firms, and lower for low credit-quality firms. This paper develops a theoretical framework to account 
for these dynamics. Moreover, it provides empirical evidence for how these dynamics impact bond prices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 Speculative-grade default rates and recovery rates are inversely correlated 
Source: “Default & Recovery Rates of Corporate Bond Issuers,” Moody’s Special Comment, February 2003 

 

The role of systematic risk in recovery becomes evident when pricing bonds because assets that bear systematic risk 
are typically associated with a risk adjustment. Motivated by the existing evidence and economic theory, we propose 
a framework within the context of a structural model where recovery is driven by systematic/industry factors 
common to a firm's asset value and an idiosyncratic factor. This model is compatible with a multi-factor model and 
similar to the one introduced in Frye (2000a) who analyzes the impact of correlation between recovery and credit on 
credit portfolio risk. Under the theoretical framework, we show that the relationship between expected recovery 
under the physical measure and the expected recovery under the risk-neutral measure is linear. This defines a simple 
relationship between expected recovery, which is typically observed in the data, and expected risk-neutral recoveries 
that can be used in traditional risk-neutral valuation techniques.  

In thinking about why a relationship exists between general economic conditions and recovery, Schleifer and Vishny 
(1992) argue that when a firm in financial distress needs to sell assets, its industry peers are likely to be experiencing 
problems themselves, leading to asset sales at prices below value in best use. Such illiquidity makes assets cheap in 
bad times, and causes ex ante variation in debt capacity across industries and over the business cycle. Acharya, 
Bharath, and Srinivasan (2005) find supporting evidence that creditors recover less if the industry in distress has 
illiquid surviving firms, if the industry is more levered, and if it has assets that are industry-specific, or in other 
words, assets that are not easily redeployed to other industries. Pulvino (1998) provides empirical evidence of this 
effect in the airline industry. 
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Similarly, Gupton and Stein (2005) document a positive correlation between a firm’s credit quality and recovery; 
expected recovery is higher for high credit-quality firms, and lower for low credit-quality firms. They find this 
positive relation prevalent even after conditioning on macroeconomic effects. Intuitively, one would expect this 
relationship, since both recovery and credit quality should be influenced by the value of the firm’s assets even after 
conditioning on the state of the macroeconomic environment.  

In this paper, model parameters are estimated using expected recovery given by MKMV’s LossCalc™. This dataset 
is unique in that it provides a time series of firm-level expected recoveries. Previous studies involving the time series 
behavior of recovery (see, for example, Fry (2000b), Hu and Perraudin (2002), Altman et al. (2003), or Düllmann 
and Trapp (2004)) typically analyze the properties of recovery in aggregate. It is not surprising that most of these 
studies focus on aggregated data since recovery information at the firm level is only observed at default, which 
means there will typically be no time series for any single firm. The benefit of using the LossCalc™ dataset is that it 
allows for estimation of firm-specific recovery parameters. With this dataset, we are therefore able to analyze the 
cross-sectional impact of systematic risk in recovery on bond prices. One exception is Carey and Gordy (2004) who 
provide an interesting empirical analysis of firm-level ultimate recoveries. Since the typical firm in their sample 
remains in bankruptcy for 1.2 years, ultimate recoveries differ from LossCalc which provides expected price of 
recovery at default. 

It is worth relating the methodology developed in this paper with traditional reduced-form models (e.g., Duffie and 
Singleton (1999)). Reduced-form models exogenously specify an arbitrage-free evolution for the spread between 
default-free and credit-risky bonds and allow for estimation of expected loss; the multiplicative product of the risk-
neutral recovery rate times the default probabilities. These models, however, do not typically allow for estimation of 
the recovery rate (risk-neutral or physical). Jarrow (2001) and Madan, Güntay, and Unal (2003) are exceptions. 
Jarrow (2001) develops a methodology for recovery estimation by using information from the equity market along 
with the reduced form framework. Meanwhile, Madan, Güntay, and Unal (2003) develop a model that allows them 
to estimate the risk-neutral density of recovery rates by using information from bonds with issuers that have 
available prices for both junior and senior issues. 

The model’s predictions related to the impact of accounting for systematic risk in recovery are explored through a 
calibration exercise. Using parameters for a bond with average characteristics, the risk-neutral adjustment implies 
modeled bond spreads that are 14% higher for a bond with average characteristics; the model-implied spread 
increases from approximately 64 bps to 73 bps. Moreover, we find that for a reasonable range of parameters, bond 
spreads will increase by 5% to over 30% as a result of incorporating systematic risk in recovery. 

As predicted by the model, we find a positive relation between the option adjusted spreads (OAS) observed in the 
data and risk-neutral recovery adjustment. In fact, over 80% of the sample exhibits a reduction in root-square error. 
Additionally, empirical evidence supports the model predictions after conditioning on model spreads that exclude 
risk-neutral recovery adjustment. 

The rest of this paper is organized as follows. Section 2 introduces the modeling framework and presents the main 
theoretical results. Section 3 describes how the variables necessary to estimate the model are obtained. Section 4 
describes parameter estimates. Section 5 describes the calibration exercise and model validation. Section 6 presents 
the conclusions that can be drawn from the model analysis. 

2 MODELING FRAMEWORK 

Risk-neutral valuation techniques are typically employed when valuing credit-risky instruments. Although the 
analysis typically accounts for systematic risk in the default probability, the analysis does not commonly account for 
systematic risk in recovery. Standard parameterizations use the mean recovery observed in the data, not the expected 
recovery under the risk-neutral measure. Moreover, the methodologies assume that the recovery amount is 
uncorrelated with the underlying asset process. One can formulate the time zero value of a zero coupon bond with a 

promised payment of a unit at time M.
1
 

                                                 
1
 Throughout the discussion, we assume interest rates are non-stochastic. 
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(1)  

 

Here, P represents the physical measure, Q represents the risk-neutral measure, r represents the risk adjusted rate of 

return, rf represents the risk free rate, CFτ
 represents the uncertain cash flow at time T,

T
CDP  represents the 

cumulative expected default probability from time 0 to time T, 
T

CQDP  represents the cumulative expected default 

probability under the risk-neutral measure from time 0 to time T, and 
T

RR  represents the recovery rate associated 

with a time T default.  

We can relate Equation (1) with the typical methodology discussed above by 

setting [ ] [ ]0 0| |P Q

T T T TE RR Default E RR Default= . This is consistent with the assumption that conditional on 

default, the recovery process is uncorrelated with systematic risk or the underlying asset process. However, evidence 
discussed in the introduction and presented later in this paper suggests that recovery does contain systematic risk.  

To account for the documented correlations discussed in the introduction, the firm’s asset (At) and recovery (
,T t

RR ) 

processes are explicitly modeled. The default is modeled as the time point T where the firm’s asset value reaches the 

default barrier (
T

DP ). Thus, the default barrier and the asset value parameters define the probability of default for 

various horizons (AT=
T

DP ). Meanwhile, recovery in the event of a time T default is modeled as the collateral-value 

process associated with the credit instrument. Although time T recovery is only observed if default occurs at time T, 
the recovery process (i.e., the collateral value) exists regardless of a default event, and prior to time T (i.e., time t). 

Thus,
,T t

RR  represents the time t value of the unconditional recovery process associated with a time T default event. 

This is different from the conditional recovery process which defines the recovery value in the default state (i.e., 

conditional on the asset process hitting the default barrier). It is worth pointing out that for Tτ ≠ ,
,T t

RR  need not be 

equal to
,tRRτ

.
2
  More formally, the joint (unconditional) stochastic processes are defined as follows: 

(2)  

Here
TRR

r and rA represent the respective drifts for RRT,t and the underlying assets under the physical measure. 

RRT
rσ and 

Arσ represent their respective diffusions. Moreover, the instantaneous correlation between
TRR

B and BA is 

assumed to be equal to
RRT

r
ρ . 

Using this basic structure, Theorems 1 through 3 develop a relationship between recovery value under the physical 
and risk-neutral measure for a default at time T; the term inside the integral on the right hand side of the relationship 

depicted in Equation (1). As such, we will drop the T subscript so that 
t

RR  and 
T

RR  represent 
,T tRR  and 

,T TRR  

respectively.  

                                                 
2
 Expected recovery for a car loan, for example, typically decreases over time as the car’s value (i.e., the collateral) depreciates 

over time. 

0 0 0 0,

0 0

0 0,

0 0

[ | ] (1 )

[ | ] (1 )f f f

M M

P rT P rT rM

T T T T M

T T

M M
r T r T r MQ Q

T T T T T M

T T

V E e CF T E RR Default e CDP CDP e

E e CF T E RR Default e CQDP CQDP e

− − −

= =

− − −

= =

 
= ∂ = ∂ + − 

 

 
= ∂ = ∂ + − 

 

∫ ∫

∫ ∫

,

,

,

,

,

.

T RR TT

T t

RR r RR t

T t

t

A A A t

t

dRR
r dt dB

RR

and

dA
r dt dB

A

= +

= +

σ

σ
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Theorem 1: The expected recovery value at time T, under the physical measure, is equal to: 

(3)  

Proof: See Appendix   A for details. 

 

To obtain the expected recovery value under the risk neutral measure, we assume complete markets so that rRR and 

rA are replaced with rf:  

Theorem 2: The expected recovery value at time T, under the risk neutral measure, is equal to: 

(4)  

 

Therefore, the relationship between 
0 [ | ]P

T TE RR A DP= and
0 [ | ]P

T TE RR A DP=  can be described as follows: 

Theorem 3: The expected recovery value at time 0, under the risk neutral measure, is equal to: 

(5)  

 

One can simplify this further. Let 
RR

λ  and 
A

λ  represent the market price of risk (i.e., Sharpe Ratio) for the recovery 

and asset market. Let rRR
R and RA represent the correlation between the recovery rate process and market (index) 

return (φ ), and the asset process and the market (index) return respectively. Using the following two resulting 

equalities, =
RR

RR

RR f

r RR

r

r T r T
R T

T
λ

σ

−
and =

A f

A A

A

r T r T
R T

T
λ

σ

−
, the relationship in Equation (5) can be written as: 

(6)   

The relationship in Equation (6) provides a parsimonious mapping between recovery under the physical measure and 
recovery under the risk-neutral measure and is worth discussing in greater detail. Focusing on the first term in the 
exponent, the expected recovery is driven lower under the risk-neutral measure when recovery is positively 
correlated with the market. The effect of the second term may seem less intuitive; a positive correlation with the 
asset process increases expected recovery under the risk-neutral measure. To understand this dynamic, consider an 

extreme case where RR A
λ λ= , 0

rRR
R = , 0

rRR
ρ > and 0

A
R > . In this case, r r ARR RR

R Rρ>  so that the risk 

premium associated with the conditional recovery process is negative despite the fact that the unconditional 

recovery process has a risk premium of zero ( 0
rRR

R = ). To understand this dynamic, first note that the default 

event pins down the asset return. Next, note that the asset return is equal to the sum of its idiosyncratic and 

2 2 2 2

/

( / 2) ( / 2) / (1- ) / 2

0 0

0

[ | ]

r RR ARR

RR r A A r A r rRR RR RR RR
r T T r T T TP T

T T T

DP
E RR A DP RR e

A

− − − + 
= =  

 

ρ σ σ

σ ρ σ σ σ σ ρ

2 2 2 2

/

( / 2) ( / 2) / (1- ) / 2

0 0

0

[ | ]

r r ARR RR

f r f A r A r rRR RR RR RR
r T T r T T TQ

T T

DP
E RR A DP RR e

A

− − − + 
= =  

 

ρ σ σ

σ ρ σ σ σ σ ρ

( ) ( ) /

0 0[ | ] [ | ] f RR r f A r ARR RR
r T r T r T r TQ P

T T T T
E RR A DP E RR A DP e

− − −
= = =

ρ σ σ

( )
[ | ] [ | ] r RR r A A rRR RR RR

R R T

Q T T P T T
E RR A DP E RR A DP e

− +
= = =

λ ρ λ σ
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systematic components. Thus a high idiosyncratic asset shock must be associated with a low systematic shock 
conditional on the default event (

T
A DP= ). More formally, a negative correlation is created between the systematic 

risk and the idiosyncratic asset processes conditional on the default event. Since the idiosyncratic recovery and 
idiosyncratic asset process are positively correlated, a negative correlation results between the systematic risk and 
the conditional recovery process. This effect drives the risk premium down, and may even drive it negative, as in the 
case of this example. It is worth pointing out that the empirical methodology employed below precludes cases 

where r r ARR RR
R Rρ≤ . This implies that the recovery under the physical measure is always at least as great as 

recovery under the risk-neutral measure when the asset and recovery markets face the same market price of risk.  

A few features of the model are worth discussing. First, it is assumed that recovery follows a log-normal process. 
This violates a range for the recovery process of [0, 1] that is generally accepted as reasonable.3  An alternative and 
perhaps more theoretically appealing approach allows for mean reversion, or bounds on the recovery process. 
Although theoretically tractable, these processes are notoriously difficult to estimate. Instead, we argue, and find 
empirical evidence supporting our theory, that the above model provides sufficient flexibility to provide an 
approximation.  

Also, Equation (6) presents a methodology of valuing recovery when the asset process hits the default threshold at 
time T. More generally, the asset process can hit the default threshold at any time before maturity, as represented in 
Equation (1). To generalize and allow default to occur at any time prior to maturity, the relationship in Equation (6) 
can be combined with Equation (1) as follows: 

(7)  

It is worth pointing out that we should not expect variance to grow at a constant rate (i.e.,
2 2

r rRR RRτ
σ σ τ≠ ). After all, 

recovery variance is bounded by reasonable bounds on recovery (i.e., [0, 1]) which is inconstant with a constant 
growth rate for volatility.  This issue will be discussed further in the next section on estimating parameters. 
Similarly, expected recovery should not increase at a constant rate with increasing default time (i.e., 

,0 ,0
[ ] [ ]

r tf

Q t Q
E RR E RR e

τ τ

∆

+∆
≠ ) because,  again, we know that recovery faces reasonable bounds (i.e., [0,1]). In short, 

the relationships described in Equations (2) through (6) should be understood to apply to a recovery process 

associated with default at a particular time. It is thus reasonable to expect a term structure of variance, {
2

,rRR τ
σ }, and 

expected recovery, { ,0
RR

τ }. 

Finally, notice that the relationships in Equations (6) and (7) allow for a separate specification of market risk for the 
recovery process and the asset process. This separation is a result of modeling the underlying recovery and asset 
processes. It would not be as simple had we directly modeled the recovery process, conditional on default. 

3 MEASURING RECOVERY RETURNS AND PARAMETERS  

In this section we describe the methodology employed in estimating 2

RRr
R ,

RRr
ρ , and 

RRr
σ  that are used in Equation 

(8) below. 

                                                 
3
 In principle, realized recovery can fall outside this range. For example, if cost of recovery is included, recovery can actually be 

negative.  

( )

0 , 0,

0

[ | ] (1 )
r RR r A A rRR RR RR f fT

M
R R T r T r M

P T T T T T MV E RR A DP e e CQDP CQDP e
− + − −

=

= = ∂ + −∫
λ ρ λ σ

τ
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Ideally, monthly recovery returns (
tRRr ) would be computed using changes in the discounted expected value of 

recovery, 
( 1)

, 11

,

[ ] /(1 )

[ ] /(1 )t

T t
T tt T RR

RR T t

t T RR T t

RRE RR r
r

E RR r RR

− +
++

−

+
= =

+
. Unfortunately, recoveries are only observed in default. For 

example, LossCalc provides estimates for the expected recovery conditional on default, [ | ]
t T T

E RR A DP= , and 

recovery variance conditional on default, [ | ]
t T T

Var RR A DP= . However, we can use the conditional recovery 

process to determine a conditional recovery return that can be used for the purpose of estimating the necessary 
parameters: 

 

(8)  

 

With 
| tRR A DPr =

 in hand, one can estimate
|RR A DPrσ

=
, 

|

|

|( , )
RR A DP

RR A DP A

RR A DP A

r

r r

Cov r r
ρ

σ σ=

=

== , and 
|

|

|( , )
RR A DP

RR A DP

RR A DP

r

r

Cov r
R

φ

φ

σ σ=

=

=
= . 

Using the mapping described in Theorem 4 below, one can obtain
|

|

|( , )
RR A DP

RR A DP

RR A DP

r

r

Cov r
R

φ

φ

σ σ=

=

=
= : 

Theorem 4: Three useful properties of the conditional recovery process are: 

1. 
|

2

2 2 / 1 RR

RR RR A DP

r

r r

t

T

ρ
σ σ

=

 
= −  

 

  

2. 
| |

2 2 1/ 2( ) /( )
RR RR A DP RR A DPr r r

T T tT tTρ ρ ρ
= =

= ⋅ − + ⋅   

3. 
|

2 2(1 / ) 1 / /
RR RR A DP RR A A RRr r r r r r

R R t T R t T R t Tρ ρ
=

= − − +  

Proof: See Appendix   A for details. 

 

The intuition for the first property follows from the conditioning event reducing the volatility for the recovery 
process; the term in parenthesis on the right hand side is less than or equal to 1. This implies that the unconditional 
volatility is greater than the conditional volatility. This is not surprising since conditioning on information reduces 
uncertainty. 

The second and third properties are more difficult to intuit since the observed conditional correlation and recovery 
R-squared combine conditional covariances, and conditional and unconditional standard deviations. As such, we 

simply point out that
|RR RR A DPr rρ ρ

=
> , and that

RRr
R  can be greater or less than

|RR A DPrR
=

. 

Armed with Theorem 4, we collect a monthly time series of conditional one-year (12-month) expected recoveries 

from LossCalc, 
12 12 12[ | ]

t t t t
E RR A DP+ + += . The dataset includes only firms in our global database that have the 

inputs required by LossCalc to estimate recovery for senior unsecured bonds. We focus on senior unsecured bonds 
since this dataset is most complete. It is worth pointing out that similar results were obtained when analyzing senior 
secured bonds. 

1

( 1)

1 |

|

|

[ | ] /(1 )
1

[ | ] /(1 )t

T t

t T T RR A DP

RR A DP T t

t T T RR A DP

E RR A DP r
r

E RR A DP r+

− +

+ =

= −
=

= +
= −

= +
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One wrinkle associated with using the LossCalc dataset is caused by the fact that LossCalc only provides 

12 12 12[ | ]
t t t t

E RR A DP+ + += ; it does not provide 
1 12 12 12[ | ]

t t t t
E RR A DP+ + + += . To proceed we assume that the term 

structure of recovery is such that
1 12 12 12 1 13 13 13 |[ | ] [ | ] /(1 )t t t t t t t t RR A DPE RR A DP E RR A DP r+ + + + + + + + == = = + . Under 

this assumption the conditional recovery return process can be computed as: 

 

(9)  

4 DATA AND PARAMETER ESTIMATION 

Following the discussion in the previous section, we estimate three parameters (
RRr

R ,
RRr

ρ , and 
|RRrσ ) for each firm 

in our recovery series. Parameters are estimated using a combination of recovery data from LossCalc, MKMV’s 
asset return data, and correlation data from MKMV’s GCorr. 

LossCalc has a statistical model that uses information on collateral, instrument, firm, industry, country, and 
macroeconomic data to predict estimates for expected recovery and recovery variance under the physical measure 

conditional on a default in twelve months.
4
  The dataset includes 1,424 defaulted public and private firms. The 

median firm size (measured as sales at annual report prior to default) is $660 million, and range in value from zero 
up to $48 billion. It is based on 3,026 global observations of market prices for loans, bonds, and preferred stock one 
month after default between 1981 and 2004. Using a monthly time series of conditional expected recovery from 
LossCalc, a time series of conditional recovery returns is constructed using the methodology outlined above. We 
focus on senior unsecured bonds since our estimates for this class are likely to be the most accurate; the number of 
observations from this category is largest and collateral data is not needed. For a more complete description of the 
LossCalc model and its performance, see Gupton and Stein (2005).  

MKMV’s GCorr is a global asset correlation model.  The model associates firms with a standard normal custom 

index 
i

φ  (defined by the firm’s associated industry and country weights) and the correlation with this custom index 

(
iAR ). The asset return process has a standard normal distribution and can be represented as: 

21
i i i iA A i A Ar R Rφ ε= + − . Here,

iA
ε  has a standard normal distribution that is orthogonal to other

jA
ε and indices

j
φ . 

Therefore, the correlation between any two obligor assets process is ( , )
i jA A GCorr i jR R Cor φ φ , where 

( , )GCorr i jCor φ φ is defined within GCorr. For a more complete description of the GCorr model and its performance, 

see Zeng and Zhang (2001). For a more complete discussion of the asset return process see Bohn and Crosby (2003). 

When modeling the recovery process, we maintain the GCorr structure and model the recovery return process as: 

| | | |

2

| | 1
i i RR i RR A DP i RR A DP RR A DP RR A DPi i i i i i i i i

RR A DP r A DP r RR r r rr R Rσ φ σ ε
= = = == == + − . Notice that 

|RR A DPi i
r

σ
=

 is now included in the process 

since the recovery returns are not normalized; Section 2 demonstrates that the standard deviation impacts pricing. 
Since our recovery data is limited to unsecured debt, it is natural to associate the country and industry weights of 
recovery processes with those of the underlying firms when defining the custom index for the recovery process 

(
i iRR Aφ φ= ). 

                                                 
4
 LossCalc recommends using these estimates of expected recovery and recovery variance for defaults beyond twelve months. 

1

( 1)

1 |

|

|

1 13 13 13

12 12 12

[ | ] /(1 )

[ | ] /(1 )

[ | ]

[ | ]

t

t

t

T t

RR t T T RR A DP

RR A DP T t

RR t T T RR A DP

t t t t

t t t t

V E RR A DP r
r

V E RR A DP r

E RR A DP

E RR A DP

+

− +
+ =

= −

=

+ + + +

+ + +

= +
= =

= +

=
=

=
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The merged asset return, recovery, and correlation dataset covers over 9,000 North American firms from January 
1999 to April 2005. To minimize sampling errors, firms with less than three-year observations during the sample 
period are excluded; the final dataset contains 6,001 firms.  

For the 6,001 firms, 
|RR A DPi i

rR
=

 is estimated by fitting the cross-moments on the GCorr correlation structure: 

(10)  

Since the number of equations is large (6,001x6,000/2 =18,003,000), the procedure is conducted on random 
subgroups of 500 random firms. We found that results do not change in any substantive way when firms are moved 
across subgroups.  

Meanwhile,
|RR A DPi i

rρ
=

 is estimated by directly computing the historic correlation between the asset return and the 

conditional return on recovery: 

(11)  

We use LossCalc estimates of the standard deviation of conditional recovery, 
|RR A DPσ =

, to compute the standard 

deviation of conditional recovery returns
|RR A DPrσ

=
. Alternatively, we could have used estimates from our historical 

time series of recovery returns. LossCalc estimates were chosen because the model is based on more data. 
Specifically, LossCalc uses data from 1981 to 2004. Meanwhile, the return series starts in 1999.  In addition the 
standard deviation of recovery returns conditional on default is assumed to be independent of when default occurs.  
Thus the estimate for each firm is computed using the following relationship: 

(12)  

Since Equation (6) requires a normalized (i.e., annualized) statistic, 
|RR A DPi i

r
σ

=
must still be divided by T .

5
  Within 

this context the T in Equation (6) can be replaced with T where 
rRR

σ now represents the standard deviation of 

recovery returns conditional on default (de-annualized): 

(13)  

Next, the mapping outlined in Theorem 4 is used to map the conditional parameters that were estimated to the 

unconditional parameters (
RRi

rR ,
|

*

RR A DPi i
r

ρ
=

 and
|RR A DPi i

r
σ

=
) needed for the model. 

We place a lower bound on the correlation since it is unlikely that the idiosyncratic portions of the asset and 
recovery processes are negatively correlated; the negative correlation is most likely a result of sample noise. Notice 

that this restriction implies that r r ARR RR
R Rρ≤ as was referenced in the discussion of Equation (6).  

(14)  

                                                 
5
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RR RRi RR ii i

r r r A
R R=ρ ρ

( )
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Histograms of
RRr

R ,
RRr

ρ  and 
RRr

σ for the sample are presented below. It is worth pointing out that the wide 

distribution of parameter values indicates a wide range of behavior for recoveries across firms. This implies a wide 
range for the impact of the risk-neutral adjustment when examining the behavior of bond prices. 

 

FIGURE 2  
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FIGURE 3  

 

 

FIGURE 4  

Next we illustrate how the model performs in capturing the correlation structures of recovery returns. Specifically 
the mean level of modeled correlations is compared with realized correlations by sector. We do this by computing 
the average modeled and realized correlation of each firm with a random sample of 500 firms. Firms are grouped 
into 13 sectors and average correlations are computed for each sector. As the graph indicates, the model performs 
reasonably well at distinguishing recovery process when grouped by sector. 
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FIGURE 5  

5 CALIBRATION AND VALIDATION 

This section explores the impact of recovery risk-neutral adjustment on valuation. Two avenues are considered. 
First, the impact of adjusting recovery for systematic risk on model-implied spreads is analyzed by calibrating the 
model to parameters observed in the data. Next we consider whether the model allows for a more accurate 
description of bond spreads that are observed in the data. 

Calibration 

Our calibration exercise utilizes a simplified zero-coupon bond with typical parameters for λ ,
A

R , T  (Macaulay 

Duration), CDP, RR,
RRr

ρ ,
RRr

σ , and 
RRr

R . The model spread (S) is computed using the following valuation 

relationship: 

(15)  

There are two items worth pointing out in the relationship. First, and potentially obvious, RR will be populated with 
either risk-neural or physical-expected recovery depending on whether the spread includes the risk-neutral recovery 
adjustment.  Equation 13 will be used to map physical-expected recovery to risk neutral to risk neutral-expected 
recovery. 

Second, the relationship is given in terms of risk-neutral default probabilities, whereas our dataset from MKMV 
provides us with physical default probabilities (EDF values). We follow the methodology employed by MKMV to 
convert physical default probabilities to risk-neutral default probabilities (for further discussion on the EDF model 

( )
[(1 ) ]

1
ln(1 (1 ) )

f fr T r S T

T T

T

V e CQDP CQDP RR e

S RR CQDP
T

− − +
= − + × =

⇒ = − − ×
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see Bohn and Crosbie (2003), and for a discussion of the MKMV approach of mapping physical to risk-neutral 
default probabilities see Bohn (1999)): 

(16)  

The following table provides the mean values in our sample for each input:
6
 

TABLE 1 Mean values for sample inputs 

Input Mean Value 

λ  0.4 

AR  0.4076 

T  4.0279 

4-year CDP 0.0237 (58bps annually) 

RR  0.4915 

RRrρ  0.3246 

RRr
σ  0.5533 

RRrR  0.5305 

 

The three graphs below represent the model implied spread when recovery is measured under the risk-neutral 
measure (the sloped line), and when it is measured under the physical measure (the horizontal line). In each 

graph
RRr

R ,
RRr

σ , or
RRr

ρ are varied while keeping all other parameters at their sample mean. Looking at the first and 

second graphs, when 
RRrR or 

RRr
σ are at their mean value of 0.53 or 0.55 respectively, accounting for systematic risk 

in recovery increases the spread from approximately 64 bps to 73 bps (14% higher). As expected from the 

discussion above, the slope of both lines are positive; if we increase 
RRrR or 

RRr
σ the required return increases to 

compensate for systematic risk. It is worth pointing out that the magnitude of the difference in spreads is very much 
affected by the choice of default probability. This is not surprising given that the recovery value plays an increasing 
role in determining spreads as the default probability increases. 

In the third graph, the negative relationship between
RRr

ρ and spreads is consistent with the modeling discussion of  

Equation (6) which describes how
RRr

ρ reduces the risk premium associated with recovery uncertainty. 

 

                                                 
6
 With the exception of λ , duration, and CDP, the dataset is the one described above. λ is set at 0.4 which is the long-run 

estimate provided by MKMV. The mean duration is obtained from a bond sample in the Reuter’s EJV database, described in 
detail below. The mean CDP was obtained from MKMV's Credit Monitor at the time this study was conducted. 

1[ ( ) ]T T ACQDP N N CDP T R
−= + λ
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FIGURE 6  

 

 
FIGURE 7  
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FIGURE 8  

Validation 

Next, we examine the model’s ability to describe corporate bond spreads bonds available through the Reuter’s EJV 
database. Data filters are imposed to remove EJV bonds with less accurate pricing information such as bonds with 
extreme option-adjusted spread (OAS), less liquidity, small issue size, and odd features. The resulting database 
consists of 6,134 bonds issued by 1,153 firms from January 1999 to April 2005. We focus on a single observation 
(specifically, the most recent) per issue to avoid overweighing the observations toward a few particular firms and 
issues; each bond had between 1 and 1,521 observations. As above, the zero-coupon bond spread equation is 
applied, Equation (15) where Macaulay duration and OAS (Option Adjusted Spread as quoted by EJV) are used to 
measure tenor and spread.  

We conduct two validation exercises. In the first we compare two measures the AE (Absolute Error) of the 

difference between the OAS and the model implied spread,
i

S . The spread is computed with recovery measured 

under the physical measure, ( [ ])
i P i

S E RR  first, and the recovery measured under the risk-neutral 

measure, ( [ ])i Q iS E RR  second: 

(17)  

Overall, approximately 80% of our sample is estimated with a lower root-square error when using the risk-neutral 
adjustment to compute model-implied spreads. To get a sense of the magnitude of improvement, the AE is under the 
physical and risk-neutral measures are presented on the x- and y-axes respectively for differences in spreads 
between 0 and 200 bps. As indicated by the graph, the improvement in fit is evident with most of the observations 
falling below the 45-degree line.  

( [ ])
P i i P i

AE OAS S E RR= − vs. ( [ ])
Q i i Q i

AE OAS S E RR= −
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FIGURE 9  

 

The graph above provides evidence that the performance of the model is improved when considering the risk-

adjusted recovery. However, we found that ( [ ])
i P i

S E RR  is generally understated, and so it is not surprising that the 

AE typically decreases when accounting for systematic risk in recovery. We deal with this issue in the next 
validation exercise which focuses on the ability of the recovery adjustment to help describe the cross-sectional 

variation in the difference between 
i

OAS and ( [ ])
i P i

S E RR . 

In this next validation exercise we analyze the relationship between the risk-neutral recovery adjustment 

(
( )r r A r iRR RR i RRi i i

R R T

i
Adj e

ρ λσ− +
= ) and the difference between the 

i
OAS and ( [ ])

i P i
S E RR  to better understand the 

model’s ability to help describe the cross-sectional distribution of spreads. We begin by placing each issue into one 

of 28 evenly spaced bins ranging from (0.72, 0.73] to (0.99, 1] based on the value of
i

Adj . The average 
i

OAS and 

( [ ])
i P i

S E RR  is then computed for each bin. As the graph below indicates, the average ( [ ])
i P i

S E RR  is relatively 

unchanged (except at the fringes) with changes in
i

Adj  indicating that the overall sample of instruments is relatively 

homogeneous for the modeled required spread. Meanwhile, there is a clear negative relationship between the 

average
i

OAS  line and
i

Adj .  This indicates that the market requires a higher spread for instruments associated with 

low value for
i

Adj  and is consistent with the model predictions. It is worth pointing out that the number of 

observations (the humped curve) decreases dramatically at the fringes making the results somewhat difficult to 
interpret.  
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FIGURE 10  

6 CONCLUSION 

This paper develops a theoretical framework that incorporates systematic risk when valuing recovery. The final 
relationship between the expected recovery amount and the risk-neutral recovery amount is shown to be linear. This 
allows for a simple relationship between expected recoveries observed under the physical measure (i.e., those 
reported in LossCalc), and expected risk-neutral recoveries that can be used in risk-neutral valuation methods. This 
paper provides detailed information on how one can parameterize the model given available data. Moreover, 
evidence is presented that spreads can be described more accurately if the model accounts for systematic risk in 
recovery.  
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APPENDIX   A THEOREM PROOFS 

Proof of Theorem 1: 

To derive the expected value under the physical measure, note that the two processes have “instantaneous” drifts and 

diffusions of
RRr , 

A
r , 

RRr
σ  and 

Ar
σ . Moreover, their natural logs have means and variances of 2 / 2RR RRr σ− , 

2 / 2A Ar σ− , 
RRr

σ  and 
Ar

σ  respectively. Therefore, the recovery and asset process have the following bivariate 

probability density function at time t: 

(18)  

The probability density function of recovery conditional on the asset process hitting the default point (DP) is equal 
to: 

(19)  

The expected value can now be computed directly: 

(20)  
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The integral can be easily computed since it represents the expected value of a lognormal random variable with a 

natural log that has a variance of 21-
RR RRr rTσ ρ , and a mean of 

2 2

0 0ln( ) ( / 2) (ln( / ) ( / 2)) /
RR RR A RR ARR r r A r r rRR r T T DP A r T Tσ ρ σ σ σ+ − + − − . Specifically, the integral is equal to 

2 2 2
0 0ln( ) ( / 2) (ln( / ) ( / 2)) / (1- ) / 2RR r r A r r r r rRR RR A RR A RR RR

RR r T T DP A r T T T
e

σ ρ σ σ σ σ ρ+ − + − − +
. Replacing the integral and rewriting the 

equation yields the following result: 

(21)  

 
 

Proof of Theorem 4: 

We prove this by first changing the measure to a normal distribution. Specifically, we define 
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Using the fact that ( | , ) ( | , | )N N N N N N N

t T t t T t TCov RR A DP A Cov RR A DP A A DP= = = = , we can use the property 

that for two sets of multivariate normal distributions: 
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Applying this to result to our multivariate normal, we get: 
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Similarly, one can construct the mapping for
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R . First, define 
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As above, we recognize ( | , ) ( | , | )N N N N N N N

t T t t T t TCov RR A DP Cov RR A DP A DPφ φ= = = = , and solve for the 

conditional distributions: 
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Finally, solving for 
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R  we get: 
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