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Validating the Public EDF Model for Global 
Financial Firms 

Abstract 

In this paper, we validate the performance of the Moody’s Analytics Public EDF™ (Expected 
Default Frequency) model for global financial firms during the last decade, including the recent 
credit crisis and its recovery period. We divide the decade into two sub-periods: an early period, 
2001–2007, and a later one, 2008–2010, and then compare the model’s performance during 
these two periods. We focus on the model’s ability to prospectively differentiate between 
defaulters and non-defaulters, its comparison to agency credit ratings, the timeliness of its 
default prediction, and its accuracy of levels.  

Overall, the EDF model’s predictive power during the recent sample period has been consistent 
with its previous longer history, outperforming alternative risk measures, including agency 
credit ratings. On average, the model provides an early warning signal at least 12 months before 
default occurs. EDF levels were conservative (i.e., somewhat higher than subsequently realized 
default rates) before the crisis when compared with later-realized default rates. 

We find that EDF credit measures perform consistently well across different time horizons. Our 
tests indicate that EDF credit measures provide a very useful forward-looking measure of credit 
risk for global financial firms.
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1 Overview 
In this paper, we present the results of a study validating the performance of Moody’s Analytics’ EDF credit measures for 
global financial firms1 during the last decade, including the recent credit crisis and subsequent recovery. We look at the 
period between 2001 and 2010. We divide the decade into two sub-periods: an early period, 2001–2007, and a later one, 
2008–2010, and then compare the model’s performance during these two time spans. We focus on the model’s ability to 
prospectively differentiate between defaulters and non-defaulters, its comparison with agency credit ratings, the timeliness 
of its default prediction, and its accuracy of levels. 

We validate the EDF model on a regular basis. Our 2007 study examined the period from 2001 through 2006 (Dwyer 
and Korablev, 2007); our 2009 study focused on the model’s performance during the peak of the recent credit crisis 
(Korablev and Qu, 2009).2 This paper details our latest study, which extends our review of the model’s performance into 
the “recovery” period of the credit crisis, including data through 2010. Credit analysis becomes more difficult during high 
default rate periods, but the severity and complexity of this recent downturn makes default prediction more challenging. 
In this study, we follow our existing model performance testing methodology, as described in Bohn, Arora, and Korablev 
(2005) and Dwyer and Korablev (2007). 

Overall, we find the EDF model’s predictive power during the recent sample period has been consistent with the previous 
longer history. On average, the model provides an early warning signal at least 12 months before default occurs. EDF 
levels were conservative (i.e., somewhat high) during the crisis when compared with later-realized default rates. 

This paper is organized as follows: 

Section 2 presents results for the EDF model’s predictive power for global financial firms. 

Section 3 discusses EDF credit measures as early warning signals for default. 

Section 4 shows simulated level validation results. 

Section 5 provides concluding remarks. 

                                                 
 
1
 “Global financial firms” excludes corporate firms. 

2
 See Korablev and Qu (2009), “Validating the Public EDF Model Performance During the Recent Crisis.” 
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2 EDF Credit Measures’ Predictive Power 
One of the most important applications of a default prediction model is to prospectively differentiate firms likely to 
default from those less likely to default. A powerful default prediction model should rank firms from the most risky to the 
least risky, and this rank ordering should correlate strongly with the subsequent default experience. In this paper, to test 
the rank order power of the EDF model, we use a well-known approach: the Cumulative Accuracy Profile (CAP). This 
approach is summarized by a measure known as the Accuracy Ratio (AR). The accuracy ratio ranges between 0 and 1; the 
closer the AR is to 1, the better the model performs. In extreme cases, for a totally random model that bears no 
information on impending defaults, AR=0. For a perfect model, AR=100%.3 

2.1 Data 
In this study, to assess the predictive power of the EDF credit measure, we compute Accuracy Ratios on the global 
financial firms sector. Utilizing rank-ordered EDF measures, we compare Accuracy Ratios for the EDF model in 
predicting defaults between 2001–2007 and between 2008–2010. All Accuracy Ratios are for a one-year horizon. Our 
findings show that the inclusion of the crisis period does not reduce the predictive power of the EDF credit measure. 

In all tests, we use defaults included in the Moody’s Analytics default database, collected and updated daily from 
numerous printed and online sources worldwide.4 As a result, Moody’s Analytics employs the most extensive public 
company default database available. Nevertheless, small public companies often disappear without news or record before 
they default, or they do not publicly disclose missed payments, which creates a number of hidden defaults, a common 
challenge often faced by default risk researchers. To reduce this problem of hidden defaults, in many of our tests, we 
restrict the sample to firms above a certain size threshold, where we believe hidden defaults are less of an issue. For 
financial firms, we typically use a size threshold of greater than $100 million or $300 million in annual sales or book 
assets, depending upon the context.5 Data does not include firms that were “bailed out” by government actions.6 

In this study, unless otherwise indicated, we calculate Accuracy Ratios by pooling all firm-month observations before 
ranking them, so that the same EDF value at different time points is assigned the same risk ranking. We track each firm-
month EDF observation for 12 months and assign a flag of default or survival. The Accuracy Ratio is computed using the 
EDF value and default flag pairs, ignoring when the EDF is measured. 

The majority of the global financial firms sector consists of U.S. firms. However, we also collect data on firms outside the 
U.S., including Japan, the United Kingdom, Germany, Canada, Hong Kong, Malaysia, Australia, France, China, Korea, 
Italy, Switzerland, Taiwan, India, Denmark, Brazil, Thailand, South Africa, and Singapore.  

During 2001–2010, there were 430 unique default events (all firm sizes), with 298 during 2001–2007 and 132 during 
2008–2010. Table 1 shows the countries and the number of firm-months in each country that constituted the global 
financial firms module in Moody’s Analytics Credit Monitor® and Moody’s Analytics CreditEdge® between 2001–2010. 
As the table shows, outside the U.S., Japan has the largest number observations in the sample, followed by the United 
Kingdom and Germany. 

                                                 
 
3
 For more details on Accuracy Ratios and a related measure of Receiver Operating Characteristic (ROC), please see Keenan and 

Sobehart (2000) and Dwyer and Korablev (2007). 
4
 We utilize government filings, government agency sources, company announcements, news services, specialized default news sources, 

as well as sources within financial institutions to ensure, to the greatest extent possible, that we account for all defaults. 
5
 All figures are in U.S. dollars, unless noted otherwise. We measure size by total annual sales or book assets for Global Financial Firms 

non-financial firms. Where the firm’s total sales number is not available, we use book assets.  
6 For results that include bailouts, please refer to Korablev and Qu (2009). 
 



 

6  

Table 1 Countries in the Global Financial Firms Database: 2001–2010 

Country Number of Observations 
(firm-months) 

Country Number of Observations 
(firm-months) 

United States 108,378 Korea 6,898 
Japan 32,059 Italy 6,182 
United Kingdom 17,309 Switzerland 5,955 
Germany 9,782 Taiwan 5,915 
Canada 9,499 India 5,679 
Hong Kong 9,471 Denmark 4,587 
Malaysia 9,222 Brazil 4,570 
Australia 8,678 Thailand 4,471 
France 8,322 South Africa 4,424 
China 7,403 Singapore 3,879 

2.2 Validation Results 
We track the solvency of each firm’s EDF credit measure for 12 months. For the 2001–2007 measurement period, we use 
EDF credit measures between December 2000 and December 2006 and default events between January 2001 and 
December 2007. Similarly, for the 2008–2010 period, we use EDF credit measures between December 2007 and 
December 2009 and default events between January 2008 and December 2010. Although comparing Accuracy Ratio 
statistics between two times periods is problematic, it provides a sense of the model’s relative performance across time. 

In Figure 1, the left panel shows the EDF model’s performance during 2001–2007. The right panel presents model 
performance during 2008–2010. Both samples include only firms with greater than $100 million in book assets. During 
the later, crisis period, the EDF credit measure’s Accuracy Ratio is 74.3%, compared with the 82.5% Accuracy Ratio 
during the 2001–2007 period. For the second sample period, the dramatic change in credit conditions for financial 
companies, beginning with the unprecedented benign period of 2007 into the largest financial crisis post the Great 
Depression, has challenged the EDF model. Although problems may arise when comparing Accuracy Ratios from two 
different data samples, comparing the recent sample, which includes the recent credit crisis, with the prior sample, shows 
that the EDF model performs as expected during both periods.7 

                                                 
 
7
 We choose the version of Altman’s Z-Score designed for public firms, which includes market capitalization in the leverage ratio. For 

the specific form we use, see Dwyer and Korablev (2007). 
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Figure 1 CAP Curves Comparing EDF Credit Measure Historical Performance for Global Financial Firms, Book 

Assets>$100 million: 2001–2007 (left panel) versus 2008–2010 (right panel). 

Figure 2 shows the CAP Curves of the historical performance of global financial firms, book assets>$100 million, 2001–
2010.8  
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Figure 2 CAP Curve Comparing EDF Credit Measure Historical Performance for Global Financial Firms, Book 

Assets>$100 million: 2001–2010. 

 

 

 

 

 

                                                 
 
8
 As a result of the entry and exit of firms over time, the sample of firms used for the validation changes to some extent over time as 

well. 
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Table 2 shows the Accuracy Ratios for the EDF credit measure at the end of each year between 2000 and 2009.  

Table 2 Accuracy Ratios for EDF credit measures by year, global financial firms, book assets>$100 million: 2001–
2009 

Date 
(end of) 

Numbers of 
Companies 

Numbers of 
Defaults Default Rates 

Accuracy Ratios
EDF 

2000/12 3,173 30 0.95% 75.5% 

2001/12 3,324 32 0.96% 83.0% 

2002/12 3,351 23 0.69% 74.1% 

2003/12 3,386 7 0.21% 92.8% 

2004/12 3,541 4 0.11% 79.2% 

2005/12 3,676 6 0.16% 96.4% 

2006/12 3,995 9 0.23% 74.3% 

2007/12 4,289 36 0.84% 68.2% 

2008/12 4,375 36 0.82% 82.8% 

2009/12 4,291 25 0.58% 86.0% 

2.3 Rated Firms 
In this section, we focus on the subset of firms with both EDF credit measures and Moody’s Investors Service credit 
ratings. Figure 3 presents the CAP Curve for rated global financial firms, 2001–2010, derived from 34 defaults and 697 
unique firms.9  
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Figure 3 CAP Curves Comparing EDF Credit Measure Historical Performance for Global Financial Firms Rated by 

Moody’s Investor Services: 2001–2010.  

                                                 
 
9
 Ratings may be withdrawn before a default event occurs. We count a firm as a rated default if it was rated within 12 months prior to 

its default.  
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3 EDF Credit Measures as Early Warning Signals 
To test the timeliness of EDF credit measures as early warning signals, we create a sample of defaulted firms from January 
2008 through December 2010. We compute the 25th, 50th, and 75th percentiles of the EDF credit measure for these 
defaulted firms dating back to December 2001. We also compute the same percentiles for the entire sample, and then plot 
two sets of percentiles on the same graph. If the EDF credit measure provides early warning signals, we expect the 
distribution of EDF credit measures for the defaulted firms to (1) be higher relative to the distribution for all firms, and 
(2) react sooner to adverse changes in credit risk than the entire population as they approach default dates. These findings 
are indeed what we observe. 

In the global financial firms sector, 132 firms defaulted between January 2008 and December 2010. Figure 4 presents 
EDF credit measure percentiles for these defaulted firms. The red lines represent the 25th, 50th, and 75th percentiles of 
EDF credit measures for companies that defaulted between January 2008 and December 2010. The blue lines represent 
percentiles for the entire sector. 
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Figure 4 Early Warning and Distribution of EDF Credit Measures for Global Financial Firms: 25th, 50th, and 75th 

percentiles. 

These two distributions are distinctly different. As shown in Figure 4, beginning in mid-2004, defaulters were riskier than 
the rest of the sample and usually had higher EDF credit measures than non-defaulters, well before default. As the entire 
sector improved between the end of 2002 and mid-2007, defaulters actually began to deteriorate during mid-2006. The 
top 25th percentile of the defaulters’ EDF measures began increasing as far back as late-2005. The speed of the 
deterioration increased dramatically in mid-2007. Defaults were realized between January 2008 and December 2010. The 
entire sector’s risk began to increase beginning in mid-2007 and remains at high levels. 

Another way to test EDF credit measures’ early warning power is to construct an event study for default firms around the 
date of default. In this test, we create a sample of defaulted firms, retaining monthly observations from 24 months prior to 
default, and then compute the median EDF credit measure by month up to the time of default (t = 0). Figure 5 overlays 
and compares the median EDF credit measures for defaulted firms for the 2001–2007 and 2008–2010 time periods. 
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Figure 5 Median EDF Credit Measures for Global Financial Firms Defaulters 

Figure 5 demonstrates that, in the event of default, EDF credit measures provide early warning signals for the 2001-2007 
period, as well as the most recent crisis period. For both time frames, the EDF credit measure is elevated more than 12 
months prior to the credit event and continues increasing steadily. Figure 5 shows that the median EDF level 24 months 
prior to default is lower for the 2008–2010 period when compared with the 2001–2007 period. This difference is not 
surprising, given that the two years prior to the crisis, 2005–2007, were a relatively benign period. Additionally, in 2008–
2010, the slope of the increase in median EDF level steepens as early as 16 months before default occurs. 

 

4 Validating EDF Level Calibration 
In this section we test the public firm EDF model’s level calibration. EDF credit measures are forward-looking probability 
measures. Thus, for a given portfolio of companies, the model implies a distribution of possible default rates. Here we test 
whether the realized default rate is statistically consistent with such a default rate distribution implied by the EDF credit 
measures using simulated levels. 

For each year in the sample, we take EDF values calculated at the beginning of the year, use them to simulate a 
distribution of default rates and then compare the actual default rate during the year against the resulting distribution. We 
use a pair-wise asset correlation of 0.19, calibrated using long-term data from the Moody’s Analytics Global Correlation 
Model (GCorr). For each year, we run 1,000 simulations to create a distribution of 1,000 simulated default rates. We can 
use a simple numerical example to illustrate the nature of the test. Suppose we have 100 independent companies, each 
with a default probability of 10%. The expected default rate is 10%, and it is possible, but not likely, to have a default rate 
of less than 5% (the p-value is only 5.75%).10 When we actually observe a 5% default rate, we would reject, at a 10% 
confidence interval, the hypothesis that the default probabilities are 10%. 

When companies are correlated, the implied default rate distribution is wider, in that, the likelihood is higher for the 
realized default rate to deviate from the mean prediction. For example, for two independent firms, each with a 50% true 
default probability, the likelihood of both (or neither defaulting) defaulting is only 25%. However, if these two firms are 

                                                 
 
10
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perfectly correlated, the likelihood of both defaulting (or neither defaulting) increases to 50%. Therefore, the likelihood of 
deviation from the mean prediction increases with correlation. 

Based on the above concepts, Kurbat and Korablev (2002) developed a method that uses realized defaults for testing 
default probability models. Specifically, they assume firm asset values are correlated with one common factor, and obtain a 
default rate distribution by simulating random realizations of a common factor and firm-specific factors. In simulations, 
each firm’s unconditional default probability is kept at the level predicted by the subject probability of default (PD) 
model. In this study, we use the same approach. 

Figure 6 presents results. To help address the hidden defaults issue, we limit our sample to companies with book assets 
greater than $300 million. As shown in Figure 6, the realized default rate was mostly lower than the median EDF level 
during the past ten years, and it remained within the intervals bounded by the 10th and 90th percentiles of the 
simulations, with the exception of 2004–2005 and 2009-2010. In general, EDF levels tend to be higher than observed 
default rates, especially preceding market recoveries. 
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Figure 6 Default Rate for Global Financial Firms, Book Assets>$300 million, 2001–2010. 

We see that EDF levels are higher than observed default rates. This finding may be partially due to the hidden defaults 
issue. Hidden defaults refers to the failure of a default dataset to capture all economic defaults. This failure can occur for 
various reasons. For example, when a debt extension occurs, it is difficult for an outsider to know if the extension is caused 
by the borrower’s inability to pay or by legitimate business need. In other cases, when the loan amount is small, failure to 
pay is simply written off by the bank, and no public announcement is released. When default data collection relies on 
public information to identify defaults, many default events may go missing. This is particularly true for smaller firm 
borrowers that draw little public attention.11 

 

                                                 
 
11 See Stein and Dwyer (2005) and Dwyer and Qu (2007) for more information regarding hidden defaults. 
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5 Conclusion 
In this study, we test the public EDF model for global financial firms using major performance measures: Accuracy Ratios 
in default prediction, early warning signals, comparison with agency ratings, and default risk levels, with special focus on 
the most recent credit crisis and recovery period.  

In Accuracy Ratio testing, we find that EDF credit measures are as powerful as they have been historically in their ability 
to prospectively differentiate between defaulters and non-defaulters. We find that the EDF model provides early warning 
signals. The distribution of EDF levels for defaulters begins to emerge out of the entire population distribution more than 
12 months before defaults occur. EDF levels were conservative (i.e., somewhat high) before the crisis, compared with later 
realized default rates.  

We find that the EDF levels are consistently higher than observed default rates, due to downwardly-biased default rate 
observations, caused by the hidden defaults issue, as well as conservatism built into the EDF model. Over the longer 
history, the realized default rate, with better default coverage, typically lies within the prediction interval, and we cannot 
reject the hypothesis that the EDF values are true measures of default risk. 
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