THE PROBLEM WE ARE SOLVING

Overcome the challenge of analyzing credit risk dynamically (multi-period) and integrate stress testing (credit risk, PPNR, provisions, mark-to-market) into a unified management framework.

MOTIVATION

Federal Reserve Bank of New York - Staff Report No. 696 – Nov 2014

Supervisory Stress Tests by Beverly Hirtle & Andreas Lehnert.

“The Basel Market Risk Amendment – finalized in 1995 – contained a provision encouraging the use of stress tests to augment the Value at Risk (VaR) measures of computing risk-weighted assets, the denominators in various measures of risk-based capital. VaR models consider the probability distribution of the value of a portfolio of assets. In principle VaR models can be thought of as the result of thousands of individual scenarios, weighted by their probability. In practice however the distributions are not tied to real-world variables other than the observed empirical distributions of the values of various assets.”
WHY IS THIS RELEVANT FOR BANKS?

(i) embed stress testing process into the banks’ credit management practices (forecasting, provisioning, profitability, risk-based pricing, risk concentration, capital adequacy), (ii) dynamic risk and profitability assessment, (iii) optimal capital management, (iv) risk appetite.

SPECIFICS OF WHAT WE DO

Compute analytical solutions to multi-period credit risk management.

1. Dynamic simulations of macro scenarios and probabilities for each path.
2. Multi-period risk parameter simulations (leveraging stress testing models) for conditional credit and mark-to-market parameter realizations.
3. Analytical calculation of (intra-period and cumulative) expected and unexpected losses, and the corresponding asset contributions.
4. Scenario-specific analysis: embedding ST into the framework.
5. Further applications: risk-based pricing, concentration and tail-risk analysis, analytical reverse stress testing, dynamic optimization, integrated mark-to-market and default risk assessment, enhanced Monte Carlo methods.
1 Dynamic Simulations of Macro Scenarios and Probabilities for Each Path
Severity of Scenarios

GDP Growth, % Q/Q: Forecasts per Quarter

Density Function

Max Drop in Cumulative GDP Growth, %
Severity of Scenarios (cont.)

Unemployment Rate, %: Over Scenario Blocks

Block 1 Block 2 Block 3 Block 4 Block 5
Dynamic Simulations of Credit Risk Parameters (Retail Credit as a Leading Example)
US First Mortgage Portfolio – Quarterly Vintages

US First Mortgages - Vintage PD Simulations
Simulated values from +Q1 to +Q9 - Old/Seasoned Vintage

US First Mortgages - Vintage PD Simulations
Simulated values from +Q1 to +Q9 - Mid-age Vintage

US First Mortgages - Vintage PD Simulations
Simulated values from +Q1 to +Q9 - Young Vintage

US First Mortgages - Vintage PD Simulations
Simulated values from +Q1 to +Q9 - Future Vintage
Analytical Calculation Of (Intra-period and Cumulative) Expected and Unexpected Losses, Asset Contributions
US First Mortgage Portfolio – Loss Metrics

<table>
<thead>
<tr>
<th>Intra-Period Exp Loss</th>
<th>Intra-Period Sigma</th>
<th>Intra-Period VaR(99.9%)</th>
<th>Cumulative Exp Loss</th>
<th>Cumulative Sigma</th>
<th>Cumulative VaR(99.9%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Q1 $ 7,784.9558</td>
<td>$ 648.5309</td>
<td>$ 10,078.3132</td>
<td>$ 7,784.9558</td>
<td>$ 648.5309</td>
<td>$ 10,078.3132</td>
</tr>
<tr>
<td>+Q2 $ 7,587.3311</td>
<td>$ 850.0719</td>
<td>$ 10,828.4443</td>
<td>$ 15,372.2869</td>
<td>$ 1,364.6327</td>
<td>$ 20,248.9755</td>
</tr>
<tr>
<td>+Q3 $ 7,442.0702</td>
<td>$ 999.0752</td>
<td>$ 11,365.3219</td>
<td>$ 22,814.3572</td>
<td>$ 2,193.1532</td>
<td>$ 30,983.0449</td>
</tr>
<tr>
<td>+Q4 $ 7,354.4725</td>
<td>$ 1,121.8841</td>
<td>$ 12,104.1981</td>
<td>$ 30,168.8297</td>
<td>$ 3,118.9971</td>
<td>$ 42,307.3145</td>
</tr>
<tr>
<td>+Q5 $ 7,274.9933</td>
<td>$ 1,228.1673</td>
<td>$ 12,933.1039</td>
<td>$ 37,443.8230</td>
<td>$ 4,124.4656</td>
<td>$ 54,375.8396</td>
</tr>
<tr>
<td>+Q6 $ 7,206.7848</td>
<td>$ 1,323.8555</td>
<td>$ 13,583.7713</td>
<td>$ 44,650.6077</td>
<td>$ 5,207.1490</td>
<td>$ 66,748.3775</td>
</tr>
<tr>
<td>+Q7 $ 7,113.0817</td>
<td>$ 1,407.5700</td>
<td>$ 14,128.6149</td>
<td>$ 51,763.6895</td>
<td>$ 6,352.9917</td>
<td>$ 79,727.7836</td>
</tr>
<tr>
<td>+Q8 $ 7,041.5606</td>
<td>$ 1,483.2394</td>
<td>$ 14,961.4969</td>
<td>$ 58,805.2500</td>
<td>$ 7,553.4249</td>
<td>$ 93,484.9177</td>
</tr>
<tr>
<td>+Q9 $ 6,989.0686</td>
<td>$ 1,559.7431</td>
<td>$ 15,795.7796</td>
<td>$ 65,794.3186</td>
<td>$ 8,805.0694</td>
<td>$ 107,915.7781</td>
</tr>
</tbody>
</table>

Intra-Period Expected Losses, σ and VaR(99.9%) (Millions of USD)

![Graph showing expected losses, standard deviation (σ), and Value at Risk (VaR) for 99.9% confidence interval over time.](image)

- **Expected Losses**
- **Standard Deviation (σ)**
- **Value at Risk (VaR) for 99.9% confidence interval**

MOODY’S ANALYTICS
US First Mortgage Portfolio – Loss Metrics
US First Mortgage Portfolio – Loss Metrics

RCs to cumulative EL

RCs to Cumulative Loss Volatility
US First Mortgages – Tail-Risk Contributions

Tail Risk Contributions for Cumulative Losses up to Q9

Loss ($bn)
Scenario-specific Analysis: Embedding ST Into Dynamic Portfolio Analysis
US First Mortgages – Cumulative Scenario Losses

Scenario-Specific Cumulative Losses over time (MCC output)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>CCAR Baseline</th>
<th>CCAR Adverse</th>
<th>CCAR Severely Adverse</th>
<th>ECCA's Baseline</th>
<th>ECCA's s1</th>
<th>ECCA's s2</th>
<th>ECCA's s3</th>
<th>ECCA's s4</th>
<th>ECCA's s5</th>
<th>ECCA's s6</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Q2</td>
<td>$14,257.5338</td>
<td>$17,940.8468</td>
<td>$20,399.0835</td>
<td>$14,300.3248</td>
<td>$14,199.2785</td>
<td>$16,178.1381</td>
<td>$16,609.8792</td>
<td>$14,721.8985</td>
<td>$14,749.7852</td>
<td>$22,007.2487</td>
</tr>
<tr>
<td>+Q3</td>
<td>$21,091.9610</td>
<td>$27,563.2185</td>
<td>$32,994.9114</td>
<td>$20,960.1226</td>
<td>$20,464.3961</td>
<td>$26,916.6141</td>
<td>$28,335.3669</td>
<td>$21,865.6050</td>
<td>$14,721.8985</td>
<td>$30,088.6691</td>
</tr>
<tr>
<td>+Q4</td>
<td>$27,816.9351</td>
<td>$37,047.0213</td>
<td>$50,213.9660</td>
<td>$27,437.8960</td>
<td>$26,544.2066</td>
<td>$29,239.8141</td>
<td>$38,484.9117</td>
<td>$41,750.9253</td>
<td>$42,893.2674</td>
<td>$50,664.9719</td>
</tr>
<tr>
<td>+Q5</td>
<td>$34,406.5024</td>
<td>$46,157.3768</td>
<td>$59,486.5298</td>
<td>$33,796.6555</td>
<td>$32,525.1744</td>
<td>$36,293.6484</td>
<td>$49,833.8217</td>
<td>$54,890.7029</td>
<td>$39,871.8138</td>
<td>$61,452.2176</td>
</tr>
<tr>
<td>+Q6</td>
<td>$40,858.0799</td>
<td>$54,983.3008</td>
<td>$71,969.6092</td>
<td>$40,029.5324</td>
<td>$38,479.7494</td>
<td>$43,129.8369</td>
<td>$60,706.4973</td>
<td>$68,013.2971</td>
<td>$42,893.2674</td>
<td>$50,664.9719</td>
</tr>
<tr>
<td>+Q7</td>
<td>$47,216.9322</td>
<td>$63,683.3171</td>
<td>$84,099.8995</td>
<td>$46,270.8379</td>
<td>$44,358.1512</td>
<td>$49,707.3865</td>
<td>$70,766.6219</td>
<td>$80,577.3767</td>
<td>$49,723.6893</td>
<td>$61,452.2176</td>
</tr>
<tr>
<td>+Q8</td>
<td>$53,421.8923</td>
<td>$72,154.3765</td>
<td>$95,528.2296</td>
<td>$52,484.7535</td>
<td>$50,315.5577</td>
<td>$56,019.5191</td>
<td>$80,329.6951</td>
<td>$92,670.4991</td>
<td>$56,512.7693</td>
<td>$72,040.5363</td>
</tr>
<tr>
<td>+Q9</td>
<td>$59,602.6835</td>
<td>$80,626.3743</td>
<td>$106,408.0386</td>
<td>$58,606.4104</td>
<td>$56,232.3471</td>
<td>$62,215.5086</td>
<td>$89,370.3160</td>
<td>$104,633.0555</td>
<td>$63,265.6943</td>
<td>$82,196.9864</td>
</tr>
</tbody>
</table>

Prob(Cumulative Losses <= Scenario-Specific Cumulative Losses)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>CCAR Baseline</th>
<th>CCAR Adverse</th>
<th>CCAR Severely Adverse</th>
<th>ECCA's Baseline</th>
<th>ECCA's s1</th>
<th>ECCA's s2</th>
<th>ECCA's s3</th>
<th>ECCA's s4</th>
<th>ECCA's s5</th>
<th>ECCA's s6</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Q1</td>
<td>0.19926</td>
<td>0.86432</td>
<td>0.97673</td>
<td>0.26567</td>
<td>0.26586</td>
<td>0.26586</td>
<td>0.26586</td>
<td>0.26586</td>
<td>0.26586</td>
<td>0.26582</td>
</tr>
<tr>
<td>+Q2</td>
<td>0.21753</td>
<td>0.96094</td>
<td>0.99924</td>
<td>0.22824</td>
<td>0.20338</td>
<td>0.36408</td>
<td>0.74231</td>
<td>0.83049</td>
<td>0.34415</td>
<td>0.35199</td>
</tr>
<tr>
<td>+Q3</td>
<td>0.23275</td>
<td>0.97534</td>
<td>0.99978</td>
<td>0.21042</td>
<td>0.14411</td>
<td>0.41393</td>
<td>0.96075</td>
<td>0.98751</td>
<td>0.37204</td>
<td>0.39988</td>
</tr>
<tr>
<td>+Q4</td>
<td>0.24821</td>
<td>0.97694</td>
<td>0.99993</td>
<td>0.20638</td>
<td>0.11976</td>
<td>0.43719</td>
<td>0.98946</td>
<td>0.99834</td>
<td>0.39955</td>
<td>0.54948</td>
</tr>
<tr>
<td>+Q5</td>
<td>0.26141</td>
<td>0.97201</td>
<td>0.99989</td>
<td>0.20775</td>
<td>0.11394</td>
<td>0.45008</td>
<td>0.99376</td>
<td>0.99921</td>
<td>0.41742</td>
<td>0.76821</td>
</tr>
<tr>
<td>+Q6</td>
<td>0.26556</td>
<td>0.96541</td>
<td>0.99980</td>
<td>0.20765</td>
<td>0.11485</td>
<td>0.44924</td>
<td>0.99370</td>
<td>0.99927</td>
<td>0.42910</td>
<td>0.88858</td>
</tr>
<tr>
<td>+Q7</td>
<td>0.27193</td>
<td>0.95873</td>
<td>0.99963</td>
<td>0.21521</td>
<td>0.11952</td>
<td>0.44080</td>
<td>0.99188</td>
<td>0.99920</td>
<td>0.44197</td>
<td>0.93348</td>
</tr>
<tr>
<td>+Q8</td>
<td>0.27540</td>
<td>0.95260</td>
<td>0.99932</td>
<td>0.22232</td>
<td>0.12918</td>
<td>0.42279</td>
<td>0.98954</td>
<td>0.99886</td>
<td>0.45349</td>
<td>0.95168</td>
</tr>
<tr>
<td>+Q9</td>
<td>0.27782</td>
<td>0.94713</td>
<td>0.99881</td>
<td>0.23170</td>
<td>0.13834</td>
<td>0.41259</td>
<td>0.98616</td>
<td>0.99842</td>
<td>0.46603</td>
<td>0.95805</td>
</tr>
</tbody>
</table>
US First Mortgages – Cumulative Scenario Losses
US First Mortgages – Cumulative Scenario Losses

Prob(Cumulative L<=Scenario Specific Cumulative Losses) +Q9 (End of Stress Testing Period)
US First Mortgages – Cumulative Scenario Losses

RCs to cumulative CCAR Severely Adverse

[Graph showing cumulative scenario losses for different vintages]
5 Practical Applications: RAROC, Optimization, Optimal Importance Sampling and Reverse Stress Testing
Risk Adjusted Pricing (RAROC)

Analytical calculation of the portfolio volatility up to the new deal’s maturity allows us to instantaneously price.

The Sharpe ratio of the new portfolio with the new deal (or deals) should be larger than without:

\[
\frac{\mu^* - r}{\sigma(L^*)} > \frac{\mu - r}{\sigma(L)} \quad \Rightarrow \quad \text{BUY}
\]
Portfolio Optimisation

What is the portfolio composition n_i that minimises the portfolio loss volatility given a level of expected loss (and hence return) $EL = L$?

Using the Lagrange multipliers:

$$\Lambda(n_i, \lambda) = \sigma(L; n_i) + \lambda(EL(n_i) - L)$$

Thus:

$$n_i C_i + \lambda EL^*_i = 0$$

$$\sum_{i=1}^{N} n_i EL^*_i - L = 0$$

Extend the current framework to study DYNAMIC OPTIMISATION (infinite horizon)

Recursive Dynamic Programming (Bellman Equations) and the study of the optimal solutions to the underlying stochastic difference equations.
Optimal Importance Sampling

Instead of drawing random numbers with unconditional probability from conditional distribution w_z draw from conditional $w_z(\alpha)$. After the simulation reweigh the loss distribution using weight $= \frac{w}{w_z(\alpha)}$.

![Graphs showing probability distributions and total loss in period 4]
Analytical Reverse Stress Testing