Account Level Retail Modeling

Approaches and Challenges
Agenda

1. The complexity of loan level modeling
2. Our approach for modeling mortgages and auto loans
3. Analyzing portfolios of different asset classes
4. Conclusion
The retail portfolio – Some challenges

Mortgages, HELOCs, and HELOans
- Complexity of modeling different types of mortgage products

Auto Loans
- Used and new car loans, modeling residual value

Credit Cards
- FICO, credit limits, new originations tightly controlled

Objectives
- Develop a consistent framework for modeling each asset class. Model borrower behavior using observable factors
- Capture correlation between different asset classes
- Stress testing and Risk Management
- Regulatory reporting
Why are mortgages complicated to model?

- Many (many) scenarios are required to capture the behavior of mortgages in different states of the world
- Loan-level behaviors are not homogenous
- Non-monotonic behavior with respect to several factors
- Interaction terms needed to explain borrower behavior
- Single period analysis cannot generally be used for path-dependent instruments like mortgages

Modeling it this way allows us to:

- Generate full collateral loss distribution and losses for MA, Fed CCAR, and user-defined scenarios
- Use actual or simulated macro-factors directly (scenario analysis, historical validation)
- Model seasoned pools and new issuance in one framework (using pool-level & loan-level data)
- Obtain loan level cash flows and price individual loans
- Explicitly model primary and pool-level mortgage insurance
- Perform tranching, VaR, and capital allocation using tail risk contribution of loans
- Generate full loss distributions for individual tranches of an RMBS
Loan level modeling in different economies

Same loan in different economies exhibits different behavior and may be correlated differently.
Different baselines for different types of loans

- **2/28 ARM**
- **5/25 ARM**
- **3/27 ARM**
- **FRM-30y**
Non-monotonic relation with different factors

Prepayment incentive is different for borrowers in different updated LTV buckets
Interaction terms needed to explain borrower behavior

Default sensitivity is different for borrowers in different FICO buckets
Using Aggregate Pool Statistics I

Consider two pools drawn from this population: one **homogeneous** and one **barbelled**

(but both with approximately the same mean CLTV and FICO)

<table>
<thead>
<tr>
<th>FICO SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low < 710</td>
</tr>
<tr>
<td>Medium [710,750)</td>
</tr>
<tr>
<td>High [750,775)</td>
</tr>
<tr>
<td>Very High >= 775</td>
</tr>
<tr>
<td>Combined LTV</td>
</tr>
<tr>
<td>Low <70</td>
</tr>
<tr>
<td>Medium [70,80)</td>
</tr>
<tr>
<td>High [80,85)</td>
</tr>
<tr>
<td>Very High >=85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FICO</th>
<th>CLTV</th>
<th>Def. rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous</td>
<td>746</td>
<td>75.0</td>
</tr>
<tr>
<td>Barbell</td>
<td>737</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Aggregate pool statistics may mask risk behavior.
Using Aggregate Pool Statistics II

Draw one portfolio uniformly and one barbelled

Repeat 10,000 times

<table>
<thead>
<tr>
<th>ONE POOL</th>
<th>Mean FICO</th>
<th>Mean CLTV</th>
<th>3-yr default rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio A - uniform sample</td>
<td>742</td>
<td>76</td>
<td>3.0</td>
</tr>
<tr>
<td>Portfolio B - barbell sample</td>
<td>738</td>
<td>75</td>
<td>4.9</td>
</tr>
</tbody>
</table>

❖ Over 99% of barbell portfolios had a default rate higher than the maximum default rate of the uniform portfolios

Aggregate pool statistics may mask risk behavior (again).
Multi-period Simulation and path dependence

- Home prices start at 100 and end, 10 years later, at 134.
- **Scenario 1:** home price appreciation of 3% per year for 10 years
- **Scenario 2:** home price depreciation of 20% over 3 years followed by a gain over the next 7 years

<table>
<thead>
<tr>
<th>Pool</th>
<th>EL (Scenario 1)</th>
<th>EL (Scenario 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.0</td>
<td>15.8</td>
</tr>
<tr>
<td>2</td>
<td>6.6</td>
<td>10.3</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>7.0</td>
<td>11.5</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Multi-period simulation is valuable due to strong path dependency.
Why are Mortgages Complicated to Model?

- If loan-level data is available, it may be preferred because
 - A single loan can behave very differently in different economic scenarios.
 - Different loan types behave very differently in the same economic scenario.

- Drivers of mortgage performance, including prepayment and default, are strongly \textit{path dependent}.

- Mortgages have many embedded options, including
 - the option to prepay (call)
 - the option to walk away from the loan (put).

- The terms of these options do not generally average out analytically.

Mortgages are one of the most difficult asset classes to model.
Overview I

- Our model is an analytic tool for assessing the credit risk of a portfolio of residential mortgages (RMBS & whole loans), auto loans, and asset backed securities.

- The model comprises loan-level econometric models for default, prepayment, and severity.

- These models are integrated through common dependence on local macro-economic factors, which are simulated at national and local (MSA) levels.

- This integration produces correlation in loan behaviors across the portfolio.

- Because we use a multi-step Monte Carlo approach, the model can be combined with an external cash flow waterfall tool and used for simulation of RMBS transactions.

- The models also use pool-level performance to update the output in real-time.
Mortgage Modeling: Overview II

FACTORS

- Economic Data (simulated or scenario)
- Loan Level Pool Data (User data)
- Supplemental user data (loan level override, pool performance, etc.)

MODELS

- Default
- Severity
- Prepayment

Output

Pool Level E(L)

 Loan Level E(L)

∑
The key economic processes that are simulated in the model are:

- **Interest rates** (10-year CMT & 6-month LIBOR)
- **Home Price Change** (national, state, and MSA level)
- **Unemployment rates** (national, state, and MSA level)
- **Loan market rates** (Freddie Mac (FHLMC) mortgage rate or subprime market rate)

Explanation of modeling process - Auto Regressive processes are used to model changes in the unemployment rate and the log of the home price index at the national level. Subsequently the unemployment rate and home price index at the state and MSA level are modeled using the results at the national level, plus their own lags. These macro factors are correlated through common dependence on interest rates and, in the case of the local economic factors, on the national levels of unemployment and home prices, respectively.
Modeling Auto Loans

- The key economic processes that are simulated in the model are:
 - Interest rates, used car rate, Oil prices, used car index
 - **Home Price Change** (national, state, and MSA level)
 - **Unemployment rates** (national, state, and MSA level)

- The key drivers of residual value of a car are:
 - Used car index, age of car, make of car

- Loan and borrower factors that affect prepayment and default:
 - Make of car, used or new, age of car at purchase
 - Interest rate, loan amount, LTV
 - Type of lender (bank, captive, or others)
 - FICO
In addition to generating the full loss distribution, it is possible to estimate losses under MA or user-defined scenarios.
Delinquent loan pipeline makes up a key part of future losses.
Modeling Seasoned Mortgage Pools: Delinquent Loans

- We categorize delinquent loans into: 30, 60, and 90+ Days Past Due.

- Default and prepayment hazard rates differ substantially between delinquent loans and current loans.

- Each delinquency status has different default and prepayment behavior.

- Explicitly modeling delinquent loans permits much finer analysis than “roll-rate” approaches for portfolio monitoring.

Delinquent loans behave very differently than current loans.
Modeling Seasoned Loans: Incorporating Pool-specific Realized Performance To-date

- Realized performance can, on occasion, be very different than predicted due to unobservable differences in underwriting, servicing, borrower characteristics, etc.
- It is important to incorporate individual components of the realized performance, namely default, prepayments, and severity, separately.
- In the majority of cases, the predicted and observed behaviors generally agree closely. In some cases, however (e.g., table below), the pool-performance can be valuable.

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Without mid-course update</th>
<th>With mid-course update</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.2</td>
<td>13.7</td>
<td>Good originator</td>
</tr>
<tr>
<td>2</td>
<td>19.6</td>
<td>23.7</td>
<td>Severity higher than expected</td>
</tr>
<tr>
<td>3</td>
<td>22.9</td>
<td>17.3</td>
<td>Conservative originator</td>
</tr>
<tr>
<td>4</td>
<td>29.7</td>
<td>14.4</td>
<td>Retail. Good underwriting</td>
</tr>
</tbody>
</table>

Pool-level idiosyncratic behavior can be useful in future projection.
How Does Primary MI Work?

- Policy has a **coverage level** between 0% and 100%
- When loan defaults, gross loss equals sum of
 - Unpaid balance at time of default
 - Unpaid interest
 - Other costs less certain deductions

- Reimbursement is lesser of
 - Gross loss × coverage level
 - Loss net of proceeds of sale of property (if property is sold before claim is paid.

- **Example**: Borrower defaults, gross loss = $200K. Coverage level = 30%
 - If house is sold for $110K, net loss is $90K, insurer pays $60K (= 30% × $200K)
 - If house is sold for $150K, net loss is $50K, insurer pays $50K

- Claim can be **rescinded** due to fraud, bad servicing, etc.
Effect of primary Mortgage Insurance is not always intuitive.
How Does Pool MI Work?

- Policy applies to total unpaid balance of all loans in pool
- Covers losses not covered by Primary MI
- Main terms parameters are:
 - Pool deductible
 - Pool stop-loss
 - Loan-level stop-loss (% of initial principal balance of loan)
- Certain loans in the pool may not be covered based on LTV or absence of primary MI
- Rescission:
 - Claim automatically denied if rescinded by primary MI
 - Can also be rescinded for same reasons as primary MI (even if primary MI is still in force)
Pool Loss Histogram with different levels of pool MI

Effect of pool-level mortgage insurance is even less intuitive.
Tail Risk Contribution to VaR

- TRC is the contribution a loan makes to the tail risk of a portfolio.

<table>
<thead>
<tr>
<th></th>
<th>EL</th>
<th>99.5% VaR Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original portfolio</td>
<td>4.0%</td>
<td>12.6%</td>
</tr>
<tr>
<td>With 100 highest EL loans</td>
<td>2.9%</td>
<td>10.2%</td>
</tr>
<tr>
<td>removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With 100 highest contributors</td>
<td>3.1%</td>
<td>9.7%</td>
</tr>
<tr>
<td>to VaR removed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tail risk of a loan is often different than its stand-alone risk.
Custom Scenarios

- Custom scenarios are an integral part of stress testing.

- User can provide a view for one or more macro-economic variables such as interest rates, GDP, HPI, and Unemployment rate.

- Models can “fill-out” all the missing variables at the national, state, or MSA level and through time in a consistent manner.

- Can “anchor” a simulation around a custom scenario. We can then obtain a full loss distribution, Value at Risk, Tail Risk Contribution, and loan level detail.
Generate losses for **MA, Fed CCAR, and user defined scenarios**.

Conduct **scenario analysis** using observable macro-economic factors.

Conduct **validations** using realized economies to-date.

Use the **same framework** to evaluate **seasoned** portfolios and **new originations**.

Calculate **VaR** and PD-based and EL-based **tranche attachment points**.

Calculate the **tail risk contribution** for each loan and thus help in managing the tail risk of a portfolio of mortgage loans.

Provide collateral loss distribution and the cash flows that can be combined with a **waterfall engine** to produce tranche-level loss distributions.

Moody's Analytics
Conclusion

- Modeling at the loan level significantly improves detail in estimating losses.
- Modeling each loan behavior (default, prepayment, and severity) separately provides substantial flexibility in calibration and specification.
- Prepayment can have a dominant effect in determining the distribution of losses during periods of home price appreciation and/or falling interest rates.
- The state of the local and national economy significantly impacts the performance of pools.
- Default, prepayment, and severity appear to be correlated through their joint dependence on common economic factors.
- The multi-step approach to simulation offers advantages when assets have path dependent behavior, as in the case of mortgages.