General Information & Client Services
  • Americas: +1.212.553.1653
  • Asia: +852.3551.3077
  • China: +86.10.6319.6580
  • EMEA: +44.20.7772.5454
  • Japan: +81.3.5408.4100
Media Relations
  • New York: +1.212.553.0376
  • London: +44.20.7772.5456
  • Hong Kong: +852.3758.1350
  • Tokyo: +813.5408.4110
  • Sydney: +61.2.9270.8141
  • Mexico City: +001.888.779.5833
  • Buenos Aires: +0800.666.3506
  • São Paulo: +0800.891.2518

In this article, we discuss development of a framework that addresses the forward-looking and probability-weighted aspects of IFRS 9 impairment calculation using macroeconomic forecasts. In it, we address questions around the practical use of alternative scenarios and their probabilities. We also include a case study to illustrate these concepts in practice.

The incoming IFRS 9 regulation provides for the use of macroeconomic forecasts and probability-weighted outcomes, particularly when accounting for the impairment of financial assets. Indeed, the spirit of IFRS 9 suggests that finance officers should be more forward-looking in their recognition of credit losses on a firm's balance sheet, with the macroeconomy often taking a central place in any impairment forecast. Paragraph B5.5.42, for example, "requires the estimate of expected credit losses to reflect an unbiased and probability-weighted amount that is determined by evaluating a range of possible outcomes." More specifically, two key areas of IFRS 9 suggest that macroeconomic scenario forecasts may be utilized:

  1. Section 5.5.3, which outlines that lifetime expected credit losses should be used to measure loss if credit risk has increased significantly since initial recognition.
  2. Section 5.5.9, which describes the procedure for assessing whether an instrument has undergone a significant deterioration in credit risk.

This report focuses primarily on Option 1 above, and how probability weights can be derived from macroeconomic forecasts to produce an unbiased estimate of lifetime expected losses. Given the accounting standard's goal of consistency, however, the scenario weights derived from Option 1 may also be used in Option 2.1

Like the IFRS 9 standard itself, this article does not prescribe a specific plan of action or a one-size-fits-all approach to the use of macroeconomic forecasts and probability weights. Rather, it is designed to help institutions build a framework that addresses the "forward-looking" and "probability-weighted" aspects of IFRS 9 impairment calculation using macroeconomic forecasts. Moreover, we provide a purely quantitative approach to the problem. The use of qualitative overlays, which are allowable within the framework of IFRS 9, is beyond the scope of this article.

This report outlines three areas of discussion for banks to consider:

  1. The number of macroeconomic scenarios to utilize
  2. How to ensure an unbiased probabilityweighted outcome
  3. Where in the impairment calculation to incorporate the macroeconomy and probability weights

The report concludes with an example from the wholesale lending space, which illustrates three different approaches to IFRS 9 compliance.

How Many Macroeconomic Scenarios?

The IFRS 9 standard does not explicitly define the number of macroeconomic scenarios that should be used for impairment calculations. Item B5.5.42 is again instructive:

In practice, this may not need to be a complex analysis. In some cases, relatively simple modelling may be sufficient, without the need for a large number of detailed simulations of scenarios. For example, the average credit losses of a large group of financial instruments with shared risk characteristics may be a reasonable estimate of the probability-weighted amount. In other situations, the identification of scenarios that specify the amount and timing of the cash flows for particular outcomes and the estimated probability of those outcomes will probably be needed. In those situations, the expected credit losses shall reflect at least two outcomes in accordance with paragraph 5.5.18. (Emphasis added.)

In some limited cases, then, the use of one or even zero economic scenarios may be sufficient. The illustrative example below, from the wholesale sector, outlines three approaches to the problem. The first two methods utilize macro scenarios and probability weights, while the third approach uses an unconditional PD that does not require a specific macro scenario or probability weighting. Similarly, there is an upper limit to the number of scenarios that may be appropriate. Section BC5.265 suggests,2 "The calculation of an expected value need not be a rigorous mathematical exercise whereby an entity identifies every single possible outcome and its probability," so the requirement of a simulation-based approach over thousands of scenarios can be disregarded.

The language used by IFRS 9 is intentionally vague, and the interpretation of the number and type of economic scenarios will differ by firm, portfolio complexity, geographical spread, and local regulator.

The language used by the standard is intentionally vague ("at least two"), and the interpretation of the number and type of economic scenarios will differ by firm and portfolio complexity. In this article, we outline three approaches, two of which use multiple economic scenarios covering both upside and downside possibilities. This seems appropriate for most firms and most portfolios as the standard is designed for firms to consider a representative sample of the complete distribution.3 The framework can be extended to incorporate more scenarios or greater complexity.

How to Ensure an Unbiased Probability-Weighted Outcome Using Alternative Macroeconomic Scenarios

Moody's Analytics economics division produces monthly off-the-shelf macroeconomic forecasts under a baseline scenario and several alternative economic scenarios, known as S1 through S4. These forecasts cover 54 countries and over 90% of the world's GDP. Each scenario has a probability attached to it based on its historical distribution.

The baseline is a 50% scenario, implying a 50% probability that the actual outcome is worse than the baseline forecast, broadly speaking, and a 50% probability that the outcome is better. Similarly, the S1 upside scenario has a 10% probability attached to it (10% probability that the outcome is better; 90% probability that the outcome is worse); S2 is a 25% downside scenario; S3 is a 10% downside scenario; and S4 is a 4% downside scenario. Moody's Analytics also internally produces two "bookend" scenarios, which are 1-in-10,000 probability events that describe the upper and lower bounds of possible economic outcomes. These bookend scenarios help to illustrate the theoretical approach, but were excluded from the following wholesale example as the guidance recommends that firms "should not estimate a worst-case scenario nor the best-case scenario."4

The baseline scenario is therefore the median outcome, and not the mean. The IFRS 9 guidelines require expected losses to be calculated on the probability-weighted mean of the distribution, not the median, so even if a single scenario were to be used, the baseline may not be appropriate. (Other economists may forecast the mode – the most likely outcome – which is also inappropriate, without overlays, within IFRS 9.) These scenario probabilities describe a cumulative distribution function (CDF) showing probabilities for the economy to perform better or worse than a given forecast (Figure 1).

Figure 1. Scenario probabilities – cumulative distribution function
Scenario probabilities – cumulative distribution function
Source: Moody's Analytics

An expected value can be derived from a CDF in two ways. First, we could "integrate" the CDF to calculate the area under the curve. This would give a single mean economic outcome that could be conditioned on in expected loss calculations. However, as will be discussed later, it may be preferable to use several economic scenarios, push these scenarios across credit expected loss inputs (PDs, EADs, LGDs), and then weight these scenario-conditional risk parameters by the scenario probabilities. A second option is to "differentiate" the CDF, or take its slope at each point, to produce a probability distribution function (PDF). Figure 2 describes the PDF using US GDP (in billions of 2009 USD).

Figure 2. Scenario probabilities – probability density function
Scenario probabilities – probability density function
Source: Moody's Analytics

We can calculate an expected value by using the probability masses from this PDF to weight either the economic data or the credit outcomes conditioned on that economic data, depending on which stage of the process the weights are applied to.

How and Where to Incorporate Macroeconomic Scenarios and Probability Weights

IFRS 9 provides no explicit guidance on how the probability-weighted outcomes should be used, although we can glean some insight from the standard itself and follow-up discussions. For example, using the above approach, should the probability weights be applied to the economic data to produce a single, probability-weighted economic scenario which is then put through the credit model? Or should the user put all relevant scenarios through the credit model and then apply the scenario weights to obtain a probability-weighted credit outcome?

Public discussion at the Transition Resource Group for Impairment of Financial Instruments emphasized that using a single macroeconomic scenario may not be appropriate if the relationship between credit losses and the macroeconomy is non-linear. This will often be the case in a properly specified credit model. Moreover, even if the credit estimate is unbiased, a single weighted scenario may be undesirable as the standard emphasizes evaluating a range of outcomes, not a range of scenarios. This is because firms may gain additional insight into the exposure of their portfolio by assessing a distribution of credit outcomes.

This can be illustrated through a simple example. Imagine it is 2006 and there are two firms that both have a large subprime mortgage exposure. Firm A models its expected credit losses under a single, probability-weighted economic scenario, showing only mild credit losses under this scenario. Firm B, however, uses several economic scenarios and notices that while its expected probability-weighted credit losses are modest, its losses under a sharp recession (such as S4) are severe enough to put it out of business.

From an accounting perspective, both Firm A and Firm B may recognize similar expected losses under IFRS 9. Yet from a statistical perspective, the measure of expected credit losses recognized by Firm A may be biased because of the non-linear relationship between credit losses and the macroeconomy. And from a risk manager's perspective, the information available from Firm B's accounting of expected losses provides a far richer information set and the possibility to take mitigating action if the risk of an S4-type scenario is considered material.

Case Study: Wholesale Portfolio Example

The Moody's Analytics CreditEdge model provides a suitable framework for IFRS 9 compliance with C&I exposures.5This example uses the EDF metric, which provides an unconditional firm-level PD with a tenure of one to 10 years, and the Stressed EDF satellite model, which uses the core EDF metric to provide a firm-level PD forecast conditioned on any economic scenario. Stressed EDF already produces monthly forecasts conditioned on the Moody's Analytics scenarios described above, and so is well-suited to this purpose. In this example, we may decide IFRS 9 stage allocation by comparing the unconditional EDF at the reporting date with EDF at origination to determine whether a significant deterioration in credit risk has occurred. A suitable criterion, such as if a firm's implied credit rating has deteriorated by, say, three or more notches, would determine stage allocation. Once an instrument has passed into Stage 2, lifetime EL must be calculated and accounted. There are three options for performing this calculation, based on the discussion in previous sections:6

  1. Apply the economic scenario probability weights to the Stressed EDF forecasts produced by conditioning on those economic scenarios. This is our recommended approach for the reasons outlined previously. Figure 3 illustrates this example using JP Morgan. The probability-weighted PD is above the baseline through the forecast period.
  2. Figure 3. JP Morgan, scenario conditional 1-year PD curves & weighted average (expected value)
    JP Morgan, scenario conditional 1-year PD curves & weighted average (expected value)
    Source: Moody's Analytics
  3. Combine the economic scenarios into a single probability-weighted scenario. This will, however, produce a biased measure of lifetime EL if the relationship between the macroeconomy and PD is non-linear. This is the case, by design, with the Stressed EDF model. Moreover, it glosses over the potential distribution of credit losses. Figure 4 illustrates the approach.
  4. Figure 4. JP Morgan, 1-year PD conditioned on a single probability-weighted average economic scenario
    JP Morgan, 1-year PD conditioned on a single probability-weighted average economic scenario
    Source: Moody's Analytics
  5. A third option is to use the unconditional EDF to calculate lifetime EL. That is, if an instrument has eight years left until maturity, simply use the eight-year EDF as a measure of lifetime PD. The resulting EL calculation can be considered a weighted distribution of economic scenarios. That is, the EDF metric combines data from a firm's balance sheet with the firm's stock price, which is also the market's expectation of discounted future profits, with every possible profit path weighted by the probability of that path occurring. The measure is also unbiased by the construction of the EDF model, which is calibrated to physical default probabilities using Moody's Analytics default database.

All three options may be suitable in different situations, depending on the relationship between credit risk and the macroeconomy and the desired objective of the reporting process. Figure 5 summarizes the results using the two-year cumulative PD from each approach.

Figure 5. JP Morgan, two-year cumulative PD under the three approaches (%)
JP Morgan, two-year cumulative PD under the three approaches (%)
Source: Moody's Analytics

Concluding Remarks

In this article we have analyzed the use of macroeconomic scenarios as part of the forward-looking, probability-weighted IFRS 9 framework. Some of the key questions around the practical use of alternative scenarios and their probabilities have been answered, and a case study illustrates these concepts in practice. We argue in favor of leveraging a handful of alternative forecasts in order to comply with recent regulation. The shape and severity of the scenarios can vary over industries and firms, but the regulatory language is fairly clear when requesting the need to account for alternative outcomes under a probability-weighted framework.

Footnotes

1 See paragraph 54 of IFRS staff paper, Transition Resource Group for Impairment of Financial Instruments, December 11, 2015

2 See Page 5, Section 10, of Incorporation of forward-looking scenarios by the Transition Resource Group (IFRS staff paper, December 11, 2015).

3 See paragraph 46(b) of IFRS staff paper.

4 See paragraph 46(d) of IFRS staff paper.

5 A modeling approach for retail portfolios is detailed in Black, Chinchalkar, & Licari, Complying with IFRS 9 Impairment Calculations for Retail Portfolios, Risk Perspectives Magazine, June 2016, Moody’s Analytics

6 The IFRS staff paper outlines three approaches that broadly mirror the three options, plus a fourth possibility which uses the modal or most likely economic scenario in combination with a qualitative overlay. Our recommendations borrow heavily from this directive.

SUBJECT MATTER EXPERTS
As Published In:
Related Insights

U.K. Residential Mortgages Risk Weights: PRA Consultation Paper CP29/16

This paper presents best practices for addressing PRA Consultation Paper CP29/16.

October 2016 Pdf Dr. Juan M. Licari, Dimitrios Papanastasiou, Maria Valle del Olmo

Complying with IFRS 9 Impairment Calculations for Retail Portfolios

Gain insight in to how to address IFRS 9 challenges by incorporating forward-looking information into impairment models for consumer lending portfolios.

August 2016 WebPage Barnaby Black

Probablility-Weighted Outcomes Under A Macroeconomic Approach

Learn how to develop a framework that addresses the forward-looking and probability-weighted aspects of IFRS 9 impairment calculation using macroeconomic forecasts and scenarios.

August 2016 WebPage Barnaby Black

Brexit Fallout: Using Scenario Analysis and a Systemic Risk Approach to Assess Corporate Credit Risk

The June 23rd referendum, in which UK voters chose to leave the European Union, has fanned financial volatility and may precipitate a recession in the UK economy. The updated economic and financial outlook has implications for corporate credit risk.

August 2016 WebPage Glenn Levine, Danielle Ferry, Dr. Samuel W. Malone

Preparing for Defaults in China's Corporate Credit Market

In this webinar Moody’s Analytics discuss the Marco-economic and credit market conditions likely to affect the future risk of default for Chinese companies; way to measure and manage the default risk of Chinese firms, and strategies for early detection of default risk.

August 2016 WebPage David HamiltonGlenn Levine, Irina Baron

Angang Steel's Credit Risk Rises As Local Rating Agencies Remain Sanguine | Moody's Analytics

Angang Steel is one of China's largest steel producers, but in recent times slower economic growth, coupled with elevated steel production, have put downward pressure on prices and revenues.

June 2016 Pdf Irina Baron, Glenn Levine

Complying with IFRS 9 Impairment Calculations for Retail Portfolios

This article discusses how to address the specific challenges that IFRS 9 poses for retail portfolios, including incorporating forward-looking information into impairment models, recognizing significant increases in credit risks, and determining the length of an instrument's lifetime.

June 2016 WebPage Barnaby Black, Dr. Shirish ChinchalkarDr. Juan M. Licari

A Simulated Stress Test of the Corporate Loan Portfolios of Australia's Largest Banks

This whitepaper discusses the findings of our simulation exercise to the corporate loan portfolios of Australia's five largest banks.

March 2016 Pdf Danielle Ferry, David HamiltonGlenn Levine

Advanced Estimation and Simulation Methods for Retail Credit Portfolios: Frequentist vs. Bayesian Techniques

In this article, we compare the results of estimating retail portfolio risk parameters (e.g., PDs, EADs, LGDs) and simulating portfolio default losses using traditional – frequentist – methods versus Bayesian techniques.

December 2015 WebPage Dr. Juan M. Licari, Dr. Gustavo Ordóñez-Sanz, Chiara Ventura

Multi-Period Credit Risk Analysis: A Macro-Scenario Approach Presentation Slides

In this presentation, Dr. Juan Licari of Moody's Analytics will present an innovative framework for stochastic scenario generation that allows risk managers and economists to build multi-period environments, integrating conditional credit and market risk modeling to meet dynamic stress testing needs.

December 2015 Pdf Dr. Juan M. Licari

Market Risk Stress Testing Models Presentation Slides

In this presentation, Dr. Juan Licari presents a two-stage process that generates consistent, transparent scenario-specific forecasts for all relevant market and credit risk instruments, ensuring cross-consistency between projections for macroeconomic and financial series.

December 2015 Pdf Dr. Juan M. Licari

Market Risk Stress Testing Models

In this presentation we present a two-stage process that generates consistent, transparent scenario-specific forecasts for all relevant market and credit risk instruments, ensuring cross-consistency between projections for macroeconomic and financial series.

December 2015 WebPage Dr. Juan M. Licari

Multi-Period Credit Risk Analysis: A Macro-Scenario Approach

In this presentation, we present an innovative framework for stochastic scenario generation that allows risk managers and economists to build multi-period environments, integrating conditional credit and market risk modeling to meet dynamic stress testing needs.

November 2015 WebPage Dr. Juan M. Licari

IFRS 9 Impairment Webinar Series – Models for Implementation

This webinar discusses determining the best approaches for model development and governance for IFRS 9 Impairment calculations.

September 2015 WebPage Manuele Iorio, Dr. Juan M. Licari

Moody's Analytics Forecasts of RCA Commercial Property Price Indexes

This article discusses the methodology used in generating forecasts of the RCA commercial Property Prices Indices.

September 2015 Pdf Dr. Juan M. LicariOlga Loiseau-Aslanidi, Dr. José Suárez-Lledó

Multi-Period Stochastic Scenario Generation

Robust models are currently being developed worldwide to meet the demands of dynamic stress testing. This article describes how to build consistent projections for standard credit risk metrics and mark-to-market parameters simultaneously within a single, unified environment.

May 2015 WebPage Dr. Juan M. Licari, Dr. Gustavo Ordóñez-Sanz

Integrating Macroeconomic Scenarios into a Stress Testing Framework

This article describes the three principles that need to be understood and analyzed for banks to have a realistic chance of integrating alternative scenario work into their stress testing workflow.

November 2014 WebPage Dr. Juan M. Licari

Arbitrage-Free Scenarios for Solvency II

This article discusses a macroeconomic forecasting model that is able to generate arbitrage-free scenarios.

May 2014 WebPage Dr. Juan M. Licari, Dr. José Suárez-Lledó

Handling low default portfolios under stress

Regulators are challenging how to perform stress testing on low default portfolios by reviewing bank's PD models for RWA stress testing, in the absence of data they need to be convinced of the methodology used. In this Moody's Analytics webinar we put forward a statistical approach to stress testing low default portfolios with practical case studies

February 2014 Pdf Manuele Iorio, Dr. Juan M. Licari

Gauging the Risk of Europe's Banks: What Might the ECB Find?

The European Central (ECB) has begun a year-long comprehensive assessment of the Euro area banking system. In this webinar, Moody's Analytics seeks to provide a default data-driven context for the ECB's exercise and a preview for what is to come.

November 2013 WebPage Danielle Ferry, Dr. Juan M. Licari

Modelling and Stressing the Interest Rates Swap Curve

We present a two-step modelling and stress testing framework for the term structure of interest rates swaps that generates sensible forecasts and stressed scenarios out of sample. Our methodology is able to replicate two important features of the data: the dynamics of the spread across maturities and the alignment of the key swap rates tenor points to their corresponding government yields. Modern models of the term structure of interest rates typically fail to reproduce these and are not designed for stress testing purposes. We present results for the euro, the U.S. dollar, and British pound swap curves.

September 2013 Pdf Dr. Juan M. LicariOlga Loiseau-Aslanidi, Dr. José Suárez-Lledó

A Macroeconomic View of Stress Testing

This article discusses how developing deterministic scenarios form a macroeconomic view on stress testing that helps to uncover system or enterprise-wide vulnerabilities and assist banks in making more informed business decisions.

September 2013 WebPage Dr. Juan M. Licari, Dr. José Suárez-Lledó

Stress Testing of Retail Credit Portfolios

In this article, we divide the stress testing process for retail portfolios into four steps, highlighting key activities and providing details about how to implement each step.

September 2013 WebPage Dr. Juan M. Licari, Dr. José Suárez-Lledó

Moody's CreditCycle - Reverse Stress Testing Capabilities

Download this article to understand how Moody's CreditCycle can be used to carry out macroeconomic stress testing.

November 2012 Pdf Barnaby Black, Dr. José Suárez-Lledó

Reverse Stress Testing from a Macroeconomic Viewpoint: Quantitative Challenges & Solutions for its Practical Implementation

This whitepaper examines the challenge of multiplicity in reverse stress testing, where the same outcome can be obtained with multiple combinations of risk factors and economic scenarios.

October 2012 Pdf Dr. Juan M. Licari, Dr. José Suárez-Lledó

A Macro-finance View on Stress Testing

For most financial practitioners, stress-testing is a “must-do” activity, even if it is not a regulatory requirement. Such stress-testing encompasses a wide range of sophisticated and quantitative exercises, including assessments of market, credit and liquidity risks. This article discusses several approaches and outlines a foundation for a robust and consistent stress-testing framework.

May 2012 Pdf Andrea Appeddu, Dr. Juan M. Licari, Dr. José Suárez-Lledó

Reverse Stress Testing: Challenges and Benefits

Reverse stress testing is becoming recognised throughout the world for its benefits. This presentation explains what reverse stress testing is and what it can achieve, along with the challenges it presents. Here we show you why reverse stress testing can lead to a deeper understanding of an organisation's susceptibility to risk and why it is a valuable tool for any risk management strategy.

November 2010 Pdf Dr. Christian Thun, Dr. Juan M. Licari, Mark Zandi

Modeling and Stressing the Interest Rates Swap Curve

This article presents a two-step modeling and stress testing framework for the term structure of interest rates swaps that generates sensible forecasts and stressed scenarios out of sample. The results are shown for the euro, the US dollar, and British pound swap curves.

WebPage Dr. Juan M. LicariOlga Loiseau-Aslanidi, Dr. José Suárez-Lledó