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Abstract 

This document presents validation results for the credit-interest lattice or the multi-dimensional 
lattice (MDL) valuation model within Moody’s Analytics RiskFrontier™. We focus on valuations of 
a large sample of corporate bonds, January 2006 – July 2013. We also produce valuations using 
the credit-only lattice and compare performance of the two lattice models. 

We find that model valuations compare extremely well with market transaction prices. Further, 
the MDL model produces better valuations for high credit quality bonds, especially in higher 
interest rate regimes. These findings validate the model’s ability to accurately value risky assets 
while accounting for both credit and interest rate risks. 

We also compare the bottom-up approach for risk integration implemented in the joint lattice 
model with a traditional top-down approach. Our analysis shows how the joint lattice model 
provides more accurate risk measures for portfolios sensitive to both credit and interest rate risks. 
Validation results are robust across different interest rate environments as well as across 
instrument characteristics.  
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1. Introduction  

Since the late 1990s, the corporate bond market has seen tremendous growth, with outstanding debt increasing almost five-fold 
during the past 15 years.1 Market transparency has also improved a great deal, especially after the introduction of TRACE by the 
NASD.2  Figure 1 shows the outstanding debt and the average trading volume of corporate bonds. Outstanding debt has increased 
at an average annual rate of approximately 10% from 1996 – 2013. Trading volume has increased gradually since 2011, though it 
fluctuated around the 2007 – 2008 financial crisis and dropped in 2008 and 2011. 

Figure 1 Outstanding Balance and Average Daily Trading Volume for the U.S. Corporate Bond Market 

 

 Figure 2 shows a steady growth in the issuance of both vanilla and callable bonds. Almost 90% of callable bonds have fixed 
coupon, whereas, for the vanilla bonds, the same proportion is approximately 60%. Further comparing callable bond and vanilla 
bond issuance, we observe an interesting phenomenon. Prior to the crisis, there were approximately 60% vanilla and 40% callable 
bonds issued. However, after the crisis, the issuance of callable bonds jumped to almost 60%, mainly driven by a large increase in 
the issuance of fixed rate callable bonds and a decrease in floating rate vanilla bonds. 

 

 

 

 

 

 

 

 

 

 

                                                                 
1 http://www.sifma.org/research/statistics.aspx 
2 Trade Reporting and Compliance Engine (TRACE) was introduced by NASD (presently FINRA) in 2002 to increase price transparency in the U.S. corporate 
debt market. All transactions executed in the OTC corporate bond market and any secondary market transactions of a TRACE eligible security have to be 
reported through the TRACE system. 
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Figure 2 New Issuance for the U.S. Corporate Bond Market 

 

 

  

In terms of risk characteristics, bonds differ from other instruments such as loans. First, most bonds are fixed-rate instruments. 
Consequently, they are sensitive to changes in both credit quality and interest rates. Second, in addition to call options, equivalent 
to prepayment options for loans, bonds may include put options or options that convert them into equity positions. For loans, an 
improvement in issuer credit quality is the principal driver of prepayment decisions, whereas, for bonds, the joint movement of 
credit and interest is required to properly capture the inherent risks. For this reason, the valuation and risk assessment of bonds, 
either using credit migration alone or using option-adjusted spreads based on a stochastic interest rates model, would likely yield 
inaccurate results. 

More generally, credit and interest rate risks are among the most important risks for a financial institution driving its losses. While 
various advanced models have been developed to measure these two risks in isolation, practices and techniques in risk aggregation 
are usually much less sophisticated. Financial institutions generally take the approach of assessing individual risk components first 
and then proceed to aggregate these components up to the level. Typical aggregation approaches, often called top-down 
approaches, include simple summation, with some fixed diversification percentages and a copula-based approach where, for 
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example, a variance-covariance matrix is used to aggregate broad risk types.3 While these top-down approaches may be sufficient 
to produce reasonable integrated risk measures for certain types of portfolios where one risk clearly dominates, they lack the 
granularity needed to provide a clear picture of the scope and depth of the risks and the interaction between different types of 
risks when the portfolio is exposed to more than one source of risk.  

In contrast to these top-down approaches, the credit-interest lattice or the multi-dimensional lattice (MDL) in RiskFrontier 4.0 
implements a bottom-up approach to evaluate losses accounting for both credit and interest rate risk at the instrument level. In 
particular, the impact of the options and contingencies common in most assets and liabilities can be accounted for properly using 
this bottom-up approach. For example, consider the case of a fixed-rate callable bond. The decision to exercise the call option 
depends on the interest rate environment as well as the credit quality of the issuer. The issuer of a callable bond exercises the call 
option when its credit quality improves or when the market interest rate drops, or some combination of these two factors. A 
system such as that shown in  Figure 3 is needed to determine when the bond is called i.e., at low interest rates, or good credit 
states, or a combination of the two. A top-down approach would generally have difficulty modeling this type of behavior in a 
consistent way.  

Figure 3 Credit-Interest Lattice 

 

The purpose of this paper is to provide evidence on the valuation performance of the MDL model, as well as demonstrate how the 
bottom-up approach for risk integration implemented in the MDL outperforms a traditional top-down approach in accurately 
assessing portfolio risks. 

We use the joint lattice model to value a comprehensive sample of corporate bonds and then compare model prices with actual 
transaction prices. The data used for this purpose consists of roughly 5,500 fixed rate corporate bonds observed from 1Q 2006 
through 2Q 2013. Here we don’t include any loans since majority of them tend to be of floating type thus insensitive to interest 
rate movements. Our analysis shows that the joint lattice model produces valuations that match reasonably well with prices 
observed in the market. The results are significantly better when CDS spread-implied risk measures are used and the sample 
consists of fairly liquid bonds. 

Next, we use the joint lattice model to compute risks measures for portfolios of vanilla and callable bonds and then compare them 
with those of a typical top-down approach. Results show that, depending on the portfolio, the top-down approach can either 
overstate or understate the overall portfolio risk. Further, the error magnitude depends on interest rate levels and the correlation 
between credit and interest rate risks.  

The remainder of this paper is organized as follows: 

» Section 2 provides an overview of the theoretical framework for the joint modeling of credit and interest rates within 
RiskFrontier and the validation methodology 

» Section 3 describes validation and different input parameters data. 

» Section 4 discusses the valuation and risk integration results for different data segments. 

» Section 5 summarizes the study and provides concluding remarks. 

                                                                 
3 For more information, see “Range of practices and issues in economic capital frameworks” and “Developments in Modeling Risk Aggregation” 
by the Basel Committee on Banking Supervision, March 2009 and October 2010. Papers by Chen, et al. (2010) and Pospisil, et al. (2013) discuss 
top-down approaches and provide examples. 
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2. Validation Methodology 
In this section, we provide an overview of the lattice framework within RiskFrontier and the methodology we use to validate the 
MDL model.  

2.1 Credit-Only Lattice 
Figure 4 illustrates the credit lattice structure used in RiskFrontier. 

Figure 4 RiskFrontier Credit Lattice Structure  

 

The credit-only lattice assumes that interest rates are deterministic. The vertical axis represents credit states for the reference 
entity, and the horizontal axis represents time. Each node on the lattice represents the credit quality of the reference entity at the 
corresponding time. The probability of migrating from one node to another node at a subsequent time point is captured by a set 
of transition probabilities, which can be derived from the Moody’s Analytics Distance-to-Default (DD) dynamics model or from a 
user-provided migration model. The instrument value at the analysis date is calculated using a risk-neutral backward valuation 
process that begins at maturity and traverses the lattice, one step back at a time, computing the value at each node on the lattice 
as it progresses. In addition, the lattice model calculates the value grids that characterize the distribution of an instrument’s value 
at the specified horizon using a forward-valuation process.  

The forward process considers possible paths leading from the initial credit quality of the reference entity at the date of analysis to 
some credit state at the horizon date. The expected value of all possible paths leading to a credit state at horizon is combined with 
the risk-neutral value of cash flows beyond horizon to associate a value with each credit state at the horizon date. The horizon 
value distribution may then be used to conduct a risk-return analysis of a credit portfolio. The lattice model can explicitly model 
the options and credit contingencies, such as call and put options of floating rate corporate bonds, prepayment options of bank 
loans, and dynamic usage schedules of revolvers. 

2.2 Credit-Interest Lattice 
The credit-interest lattice is a multi-dimensional lattice (MDL) designed to jointly model the dynamics of credit risk and interest 
rate risk. As described in the white paper “Estimating Parameters of the Joint Interest Rate and Credit Model in RiskFrontier,” the 
joint lattice model is constructed by combining the credit-only lattice with the interest rate lattice through a copula for which the 
correlation parameter is estimated in the Moody’s GCorr Macro framework. On the joint lattice, movements of short rate level 
and credit quality are monitored and serve as the state of the world in assessing the economic value of future cash flows, along 
with decisions on contingencies such as call or put options. Instrument values at the analysis date and value of distributions at 
horizon are calculated for each instrument through the backward- and forward-valuation process similar to those on the credit-
only lattice. At the portfolio level, interest rate shocks are simulated along with credit factors to produce instrument- and 
portfolio- value distributions, as well as risk-return statistics.  
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Figure 5 Credit-Interest Lattice 

 

 Figure 5 shows the joint lattice structure used in RiskFrontier. At a given time	ݐ, the lattice nodes are represented by ܵ௧ ൌ
ሺܳܥ௧, -We must also find the period .ݐ	௧ correspond to the credit and interest rate lattice nodes at timeܴܫ ௧ andܳܥ ௧ሻ , whereܴܫ
to-period transition probability	ܲሺܵ௧భ, ܵ௧మሻ. Given the marginal transition probabilities along the credit dimension and along the 
interest rate dimension, and the correlation between credit and interest rate movements, the joint transition probabilities can be 
calculated on the joint lattice via a Gaussian copula.  

MODELING EMBEDDED OPTIONALITY IN FIXED RATE INSTRUMENTS 

Fixed rate instruments such as corporate bonds are often issued with flexible funding arrangements and may include one or more 
options, such as call options, put options, or an option to convert the bond into an equity position. In the case of call options, the 
debt issuer retains the right to repay the debt prematurely at a predetermined date and price, whereas, for put options, the lender 
reserves the right to terminate the contract prematurely. Once we have the joint credit-interest lattice with contractual principal 
and coupon cash flows laid out at each lattice node as per instrument’s terms and conditions, we can use backward induction to 
calculate the instrument value at the analysis date and evaluate the embedded options at each step. We can also calculate the 
value distribution of the instrument at horizon on the joint lattice by combining the cash flows received before horizon and the 
future cash flow values at horizon. 

2.3 An Overview of the Validation Methodology 
We compare the two lattice models to quantify the additional value the credit-interest lattice provides over the credit-only lattice. 
In our approach, we compare the two lattice models by studying how closely the prices produced by these models track the 
market price benchmark of these bonds. Since the value of vanilla bonds is not affected by stochastic interest rates, we analyze the 
pricing errors only for callable bonds using the two lattice models. Further, we use only the high credit quality callable bond 
dataset for this analysis. The primary reason for this approach is that the transaction prices of the high credit quality callable bonds 
are relatively less volatile when compared to those of the low credit quality callable bonds. Also, the illiquidity costs on the higher 
credit quality callable bonds are much lower than those on the lower credit quality bonds.  

We construct the market price benchmarks using the TRACE data. For most part of the analysis, we use the closing price 
benchmark. In Section 4.1, we describe how we construct this benchmark, and, in Section 6.1, we elucidate the motivation for 
constructing various alternative market price benchmarks. 

 

 

 

 

 

 



  

 

QUANTITATIVE RESEARCH GROUP

8 JUNE 2015 MODELING THE JOINT CREDIT-INTEREST RATE DYNAMICS ON A MULTI-DIMENSIONAL LATTICE PLATFORM: MODEL VALIDATION AND APPLICATIONS IN RISK INTEGRATION

3. Data 
In this section, we describe the validation data and input parameters. 

3.1 Bond Data 
Bond data comes from FINRA’s TRACE (Trade Reporting And Compliance Engine) and Reuter’s EJV databases. The TRACE database 
provides end-of-the-day prices and other bond attributes such as coupon rate, issue date, maturity date, etc. We use the EJV 
database to download EJV model prices as well as call schedules for callable bonds. We apply the following filters to the data: 

» Include corporate bonds issued in the U.S. and denominated in USD 
» Include fixed-coupon only  
» Include callable bonds with “Cash Call” provision only. Other call features such as “Make Whole Call,” or “Special Event 

Call” are not supported by RiskFrontier yet. 
» Include bonds with Agency Ratings 
» Exclude bonds with convertible, equity claw back, or private placement features 

In addition to the aforementioned filters, we also exclude bonds with missing TRACE transaction prices or missing EDF value 
information. The data sample covers January 2006 – August 2013. We use approximately 6,500 unique bonds issued by 412 
issuers, contributing to approximately 49,000 vanilla and 32,000 callable bonds observations at a monthly frequency. As 
discussed in Section 4.1, we subsequently apply liquidity filters to the full sample to test model performance on a liquid sample. 

 Figure 6 shows the distribution of the sample by origination year. The majority of the bonds in our sample are issued after 2001. 
However, there are a few bonds issued in early the 1990’s as well. For the vanilla bonds sample, the maximum number of bonds 
come from 2004, whereas, for the callable bonds sample, most are from 2005. It is worth mentioning that there is a significant 
drop in the number of callable bonds issued after 2008, despite the fact that there is a significant increase in callable bonds 
issuance post-crisis. Our investigation shows that, after the crisis, there are more callable bonds that are either not “Cash Callable” 
or that have additional optionalities, such as equity claw back, convertible, etc.4 Since we filter out such bonds from the sample, 
we notice a drop in the number of callable bonds after the crisis. 

Figure 6 Sample Breakdown By Origination Year 

 

 Figure 7 shows the sample distribution by valuation year. Although we have a comparable number of callable and vanilla bonds in 
our sample, there are fewer callable bonds observations. This trait is due to lower trading activity for callable bonds and, hence, 
missing TRACE prices. That being said, the sample includes observations from both high and low interest rate periods. 

 

 

 

 

 

                                                                 
4 May be due to very low interest rates, which would diminish the benefit of bonds issued with cash-call feature only. 
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Figure 7 Sample Breakdown By Valuation Year 

 
*Includes observations only up to June 2013 

 

 Figure 8 and  Figure 9 display data distribution by industry and by debt type, respectively. The most common industries include 
Other Financials, followed by Bank and S&Ls and Consumer Goods and Durables. There are only a trace of bonds issued by firms in 
the Financials and Utilities industries. In terms of debt type, approximately 90% of the bonds fall into either the senior unsecured 
or the senior secured categories. 

Figure 8 Sample Breakdown by Industry Sector 
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Figure 9 Sample Breakdown by Debt Type 

 

3.2 Input Parameters 
To value the bonds using the lattice model, we require the following model parameters:  

» Credit Risk Parameters: Credit risk parameters include the probability of default (PD), the loss given default (LGD), and 
the market Sharpe ratio (ߣ). We use both EDF- and CDS-implied parameters to value the bonds and to analyze the price 
differences between the model and the market. We use the market Sharpe ratio to transform between a physical and a 
risk-neutral measure using the following equation: 

ܳ௧ ൌ ܰ൫ܰିଵሺ ௧ܲሻ ൅ ൯ݐ√ߩߣ
 

Where 
t : time horizon 
Q୲ and P୲ : cumulative risk-neutral and physical default probabilities 
λ : the market Sharpe ratio or the market price of risk 
ρ : the correlation between the asset return of the issuer and of the market 
ܰ and ܰିଵ : the cumulative Normal distribution function and its inverse function 
 

For CDS-implied parameters, we estimate separate market Sharpe ratios for investment grade and non-investment grade issuers, 
whereas, in the case of EDF-implied parameters, there is only one Sharpe ratio for the two risk categories. 

 Figure 10 displays the 90th percentile, median, and the 10th percentile of CDS Spread Implied EDF (SI EDF) credit measures for the 
sample period. As it can be noticed, SI EDF measures increased dramatically during the 2007 – 2008 crisis and reached their peak 
levels in 2009. The SI EDF measures have been decreasing since then, though the 2013 levels are still higher than that of 
2006.  Figure 11 shows the market Sharpe ratio variation over time. The graph plots the CDS-implied risk premiums for investment 
grade and non-investment grade categories. It is not surprising that the market Sharpe ratio also spiked in 2008 for both risk 
categories. However, the two Sharpe ratios have come down since then and have remained very close to one another. 
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Figure 10 EDF Credit Measure During the Sample Period 

 
 

Figure 11 Market Sharpe Ratio During the Sample Period 

 
 
 

» The Hull-White Interest Rate Model Parameters: The two parameters of the Hull-White one factor interest rate model 
— mean reversion (ߢ) and volatility (ߪ) — are estimated from the historical bond volatility using the “Unannualized 
Optimization” approach described in the white paper “Estimating Parameters in the Single-Factor Hull-White Model 
Using Historical Data” by Meng, et al. (2013). This approach is the same as the one used for the parameters provided in 
RiskFrontier. 

Figure 12 and Figure 13 show the time series of ߢ and ߪ estimated using the “Unannualized Optimization” approach and 
the “Swaption” approach, respectively. The “Unannualized Optimization” approach-based parameters are more stable 
and capture the long-term trend. As mentioned in the above paper by Meng, et al., these parameters are better suited for 
the purpose of risk management. In this study, we briefly discuss how the valuation results change when using the 
“Swaption” approach-based parameters. 
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Figure 12 Hull-White Model Parameters Estimated from Bond Volatility 

 

Figure 13 Hull-White Model Parameters Estimated from Swaption Volatility 

 

 

» Correlation parameters: We estimate the two correlation parameters — a) correlation between the asset returns of the 
issuer and the market (a measure of systematic risk), and b) correlation between the asset returns of the issuer and the 
interest rate — using the GCorr Macro framework. 

 

4. Results 

In this section, we first present the valuation results and then compare the performance of the MDL with the credit-only lattice. 
We show results for the full sample based on both CDS- and Equity-implied risk parameters and illustrate through an example why 
the three markets — the bond, the equity, and the CDS market — may not move together. We then focus on liquid sample results 
based on CDS-implied parameters and compare the performance of the two lattice models.  

Next, we discuss the risk integration results using the bottom-up approach implemented in the MDL and a traditional top-down 
approach. We compare the risk measures based on these two approaches for vanilla and callable bond portfolios under different 
interest rate environments. 
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4.1 Valuation Results 

FULL SAMPLE 

We value the bonds in our sample using the MDL model and calculate the pricing error as the difference between the TRACE’s 
transaction price and the model price.  Figure 14 shows the pricing error distribution for vanilla bonds using both CDS- and equity-
implied risk parameters. In both cases, the distribution is centered at zero and is nearly symmetric around it. This finding shows 
that there is no systematic bias in model prices, and, on average, model prices are close to market prices. Further, the CDS-based 
prices are closer to the market prices than the equity-based prices. Our analysis shows that higher pricing errors using the equity-
implied parameters are driven primarily by Other Financials and REIT sectors, for which, the PD estimates for the 2009 – 2012 
period were somewhat conservative. For the remaining sectors, the equity-based results are comparable with the CDS-based 
results. 

Figure 14 Pricing Errors Distribution for Vanilla Bonds 

 

 Figure 15 shows the error distribution for callable bonds using CDS-implied risk parameters.  Table 1 shows the summary statistics 
of pricing error distributions. On average, the errors for callable bonds are higher than vanilla bonds. This result could be due to 
relatively lower trading activity for callable bonds, which would lead to higher bid-ask spreads and less accurate transaction prices. 
It is also possible that the price of the embedded option in the market reflects additional information not incorporated in our 
lattice model. 

Figure 15 Pricing Errors Distribution for Callable Bonds 
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Table 1  

Summary Statistics of Pricing Errors on Full Sample 

BOND TYPE STATISTIC EQUITY-IMPLIED CDS-IMPLIED 

Vanilla 

Mean Error  0.80  -1.93 

Mean Absolute Error  5.84  4.17 

Std Dev  9.52  6.54 

Callable 

Mean Error  9.70  0.35 

Mean Absolute Error  11.51  5.60 

Std Dev  12.39  8.45 

 

We investigate the pricing errors further by studying the general pattern in the co-movements of equity, CDS, and bond markets. 
Our analysis shows that the three markets may not always move in the same direction.  Figure 16 shows an example in which the 
higher credit riskiness reflected in the CDS and the Equity market is not observed in the bond market: the CDS spread increased 
from 133 bps to 283 bps, and the stock price dropped by 30%, but the bond price did not fluctuate much. Such behavior could 
also contribute to price differences between the model and the market. 

Figure 16 Prudential Financial: Movements in the Equity and CDS Market and Their Impacts on Bond Price 

 

LIQUID SAMPLE  

In our full sample analysis, we observe some large pricing errors (> $20 or < -$20) for both vanilla and callable bonds. Our further 
and detailed examination of these errors indicates that it may be driven by illiquidity in the bond market and, thus, motivates us to 
focus on the liquid sample.  

To filter the bonds based on their liquidity, we estimate the following two commonly used measures of liquidity using end-of-day 
trading information. We use this method as we do not have the historical bid-ask spread information readily available. 

௧݀ݑ݄݅݉ܣ 	ൌ
1

௧ܰ
෍

|௜ݎ|

ܳ௜

ே೟

௜ୀଵ

 

 

௧݈݈݋ܴ ൌ 2ඥെܿ݁ܿ݊ܽ݅ݎܽݒ݋ሺݎ௜,  ௜ିଵሻݎ

0

0.01

0.02

0.03

0.04

0.05

0.06

0

20

40

60

80

100

120

Oct-09 Feb-10 Jun-10 Oct-10 Feb-11 Jun-11 Oct-11 Feb-12 Jun-12 Oct-12 Feb-13

E
D

F

P
ri

ce
 (

in
 D

o
lla

rs
)

Trace Price (left) Model Price (EDF; left) Model Price (SI EDF; left)

EDF (right) SI EDF (right)



  

 

QUANTITATIVE RESEARCH GROUP

15 JUNE 2015 MODELING THE JOINT CREDIT-INTEREST RATE DYNAMICS ON A MULTI-DIMENSIONAL LATTICE PLATFORM: MODEL VALIDATION AND APPLICATIONS IN RISK INTEGRATION

Where 

 ௧= Amihud measure of illiquidity݀ݑ݄݅݉ܣ

 ௧ = Roll’s measure of illiquidity݈݈݋ܴ

 ݐ ௜ = return for day ݅ for monthݎ

ܳ = traded quantity for day ݅  

௧ܰ = number of days with trading information for month t  

 Figure 17 shows the time-series of the bond market illiquidity, measured using these two measures. Results are intuitive, in the 
sense that the market liquidity was high before and after the 2008 – 2009 crisis, but dropped dramatically during the crisis.5 

Figure 17 Bond Market Illiquidity Over Time 

 

Using these liquidity measures, we group bonds into liquid and illiquid samples by applying the liquidity filter to each year 
separately. The liquid sample selected consists of bonds with Amihud measure in the 0-25th percentile from each year, whereas, 
the illiquid sample comprises the remaining bonds. We then compare the pricing errors for these two sub-samples, and find that 
the errors for the liquid sample are significantly smaller than those of the illiquid sample.  

 Figure 18 and  Figure 19 show the pricing error distributions for vanilla and callable bonds, respectively. For the liquid sample, 88% 
of vanilla bond and 63% of callable bond pricing errors are within a $4 difference. This result compares with 63% of vanilla bonds 
and 45% of callable bonds with pricing errors for the illiquid sample. These results highlight that model performance is 
significantly enhanced when we filter out illiquid bonds. 

                                                                 
5We require a bond to be traded for at least 10 days during a month to reliably estimate its liquidity measure. 
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Figure 18 Pricing Errors Distribution on Liquid and Illiquid Samples: Vanilla Bonds 

 

Figure 19 Pricing Errors Distribution on Liquid and Illiquid Samples: Callable Bonds 

  

 Table 2 and  Table 3 show the summary statistics of vanilla bond and callable bond error distributions, respectively. The liquid 
sample pricing errors are roughly 30-50% smaller than those of the illiquid sample. It is worth mentioning that the errors for the 
lattice model are somewhat larger than the EJV errors. This finding is not surprising, as the EJV model uses TRACE pricing history to 
calibrate the option-adjusted spread that, in turn, is used in pricing. Hence, it is expected to better match trace prices. 

 

 

 

 

 

0
5

10
15
20
25
30
35
40
45
50

<
-2

0

[-
18

, -
16

)

[-
14

, -
12

)

[-
10

, -
8)

[-
6,

 -
4)

[-
2,

 0
)

[2
, 4

)

[6
, 8

)

[1
0,

 1
2)

[1
4,

 1
6)

[1
8,

 2
0)

P
er

ce
n

t

TRACE - Credit and IR Lattice Model Price

Liquid Sample

0

5

10

15

20

25

30

<
-2

0

[-
18

, -
16

)

[-
14

, -
12

)

[-
10

, -
8)

[-
6,

 -
4)

[-
2,

 0
)

[2
, 4

)

[6
, 8

)

[1
0,

 1
2)

[1
4,

 1
6)

[1
8,

 2
0)

P
er

ce
n

t
TRACE - Credit and IR Lattice Model Price

Illiquid Sample

0

5

10

15

20

25

30

<
-2

0

[-
18

, -
16

)

[-
14

, -
12

)

[-
10

, -
8)

[-
6,

 -
4)

[-
2,

 0
)

[2
, 4

)

[6
, 8

)

[1
0,

 1
2)

[1
4,

 1
6)

[1
8,

 2
0)

P
er

ce
n

t

TRACE - Credit and IR Lattice Model Price

Liquid Sample

0
2
4
6
8

10
12
14
16
18
20

<
-2

0

[-
18

, 
-1

6
)

[-
14

, 
-1

2
)

[-
10

, -
8)

[-
6,

 -
4)

[-
2,

 0
)

[2
, 4

)

[6
, 8

)

[1
0,

 1
2)

[1
4,

 1
6)

[1
8,

 2
0)

P
er

ce
n

t

TRACE - Credit and IR Lattice Model Price

Illiquid Sample



  

 

QUANTITATIVE RESEARCH GROUP

17 JUNE 2015 MODELING THE JOINT CREDIT-INTEREST RATE DYNAMICS ON A MULTI-DIMENSIONAL LATTICE PLATFORM: MODEL VALIDATION AND APPLICATIONS IN RISK INTEGRATION

Table 2  

Summary Statistics of Pricing Errors on Liquid and Illiquid Sample: Vanilla Bonds 

LIQUID SAMPLE ILLIQUID SAMPLE 

STATISTIC  CREDIT AND IR LATTICE EJV CREDIT AND IR LATTICE EJV 

Mean Error -0.52 0.08 -1.74 -0.32 

Mean Absolute Error 1.90 0.66 4.60 2.06 

Standard Deviation 3.44 1.54 6.94 4.55 

Number of Observations 7,481  22,193  

Number of Bonds 807  1,299  

Number of Issuers 146  188  

 

Table 3  

Summary Statistics of Pricing Errors on Liquid and Illiquid Sample: Callable Bonds 

LIQUID SAMPLE ILLIQUID SAMPLE 

STATISTIC  CREDIT AND IR LATTICE EJV CREDIT AND IR LATTICE EJV 

Mean Error 2.23 1.43 1.95 1.95 

Mean Absolute Error 4.58 2.62 6.51 6.51 

Standard Deviation 6.64 4.29 9.04 9.04 

Number of Observations 995 5,736 
 

Number of Bonds 331 654 
 

Number of Issuers 52 55 
 

VALUATION RESULTS USING SWAPTION MARKET BASED HULL-WHITE MODEL PARAMETERS  

The Hull-White interest rate model parameters used in our study are estimated from historical bond volatility. In this section, we 
discuss how results would compare if we use the parameters estimated from at-the-money swaptions’ volatility. As noted in 
Section  3.2, the parameters from the swaption approach are more varying and resemble a point-in-time measure of interest rate 
dynamics. 

 Table 4 presents the average pricing errors for callable bonds,6 based on mean reversion (ߢሻ and volatility (ߪሻ	parameters 
estimated using the two approaches. The two sets of parameters produce fairly similar results. The mean absolute error using the 
swaption volatility-based parameters is about five cents lower than the bond volatility-based parameters. 

 

Table 4  

Pricing Errors Using Bond Volatility-Based and Swaption Volatility-Based Hull-White Model Parameters 

LIQUID SAMPLE ILLIQUID SAMPLE 

BOND TYPE BOND VOLATILITY 
BASED PARAMETERS 

SWAPTION VOLATILITY 
BASED PARAMETERS 

BOND VOLATILITY 
BASED PARAMETERS 

SWAPTION VOLATILITY 
BASED PARAMETERS 

Callable 

1.35 1.15 0.53 0.36 

3.63 3.57 5.55 5.49 

5.55 5.51 8.06 8.04 

 
                                                                 
6For this comparison study we use only a sub-sample of our data. Hence, the bond volatility parameters based results slightly differ from those of in  Table 3. 
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4.2 Comparison of Credit-Interest Lattice and Credit-Only Lattice  
As mentioned in Section 2.3, we compare the two lattice models by studying how closely the model prices track the market price 
benchmark. In the following section, we describe some of the TRACE data features, and we discuss the construction of our “close 
price” benchmark used in Section 4.1, and how we refine it.  

TRACE data includes the bond closing price, as well as additional information on trading activity, such as the total number of 
transactions and traded quantities on any given day. The number of transactions on a given day can vary depending on bond 
liquidity. In our dataset, the median number of transactions per day is two, whereas, the maximum number of transactions per day 
is 355 for Principal Life Insurance Company bond (CUSIP 74254PYL0) on July 7, 2008. We construct our “close price” benchmark 
using the closing or last transaction price on a given day (similar to the construction of equity benchmarks). If there are no 
transactions on that particular day, we look forward one business day and use the last traded price of that day. In case there are no 
transactions on the subsequent business day as well, we drop that bond observation from our dataset. Thus, we only use the price 
of the last transaction (sorted by the time stamp) and ignore other transaction prices on a given day. Although, this construction 
appears to be straightforward, in terms of computation and rationale, we notice that bonds with almost identical covenants (such 
as maturity, coupon frequency, call dates, coupon type, bond issuer, and seniority, but differ only in origination date), henceforth, 
“similar bonds,” are priced differently by the market on a same day. Often times, the difference in benchmark TRACE prices 
between similar bonds is often greater than $5.00 on the same day.  Figure 20 shows the close benchmark for couple of similar 
General Electric bonds issued one week apart. There are nine instances (about 5.6% of the total observations) where the prices of 
these two bonds differ by more than $5.00 between October 2004 and August 2013. We can also see that more than 50% of the 
time, the “close price” benchmarks of these bonds differ by about one dollar. 

Figure 20 Close Benchmark Prices for Similar Bond Pair 

 

 

It is possible to make the conjecture that these price differences between similar bonds arise because of the sub-optimal 
construction benchmark. To that end, we test several approaches to constructing a robust benchmark that enables us to conduct a 
fair comparison of the two lattice models. The Appendix provides details different benchmark construction using the transaction 
level information and compares their performance. In the end, we use a fixed-benchmark with lag of three. It should be noted that 
the new benchmark merely allows us to capture the subtle differences between the two lattice models. As shown in  Figure 21, 
there is no systematic bias between the close price benchmark used in Section  4.1 for comparing the model with the market and 
the fixed benchmark with lag of three. In other words, we do not find any evidence of one benchmark consistently outperforming 
or underperforming the other. So, the new benchmark would produce results almost identical to those based on the close price 
benchmark. 
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Figure 21 Monthly Mean Differences between Close Price and Fixed Benchmarks with Lag of Three  

 

Next, we compare the credit-only and credit-interest rate model prices against the newly constructed benchmark with lag of 
three.  Figure 22 presents the average monthly model prices and the corresponding benchmark price. During the high interest rate 
period (2006 – 2008), the prices generated by the Credit-interest lattice are closer to the benchmark price. This finding is in-line 
with our expectations, as the impact of interest rates on embedded optionality is more pronounced during times of high interest 
rates. In other words, there is a higher expectation that future interest rates would be lower, and the bond is more likely to be 
called by the issuer. This results in lower bond prices in the case of Credit-Interest lattice, such that the difference between the two 
lattice models accounts for the risk of reinvesting cash flows at lower interest rates (i.e., increased prepayment or reinvestment 
risk). However, when the interest rates drop significantly (2009 onwards), the value of embedded options increases and the impact 
of interest rates on embedded option prices is dampened (the sensitivity of option price to interest rate changes decreases as the 
option money-ness increases). Therefore, the average price from the two models converge in recent years and stay close to strike 
price (i.e., par). 

Figure 22 Monthly Mean Model and Benchmark Prices Across Time 

 

 Figure 23 presents the error comparison results for high credit quality bonds across all years. Here we count the number of times 
one model outperforms the other in matching the trace price.7 The study shows that the MDL model provides better valuations for 
bonds with high credit quality. In 2006, the MDL outperforms the credit-only lattice 68% times.8 This finding suggests that the 
                                                                 
7 We use a threshold of $0.50 and count only those occurrences when the two models prices differ by more than the threshold value. 
8 The comparison of average pricing errors also showed similar pattern. 
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market perceives high credit quality bonds to be more sensitive to interest rate movements and as the credit quality deteriorates, 
the credit risk starts dominating the interest rate risk.  

Figure 23 Model Comparisons Through Time 

 

 Figure 24 shows comparison of absolute pricing errors across various years. Clearly, MDL produces smaller errors when compared 
to those of credit-only lattice. We also show the market illiquidity proxy.  

Figure 24 Comparison of Pricing Errors of Credit-Interest Lattice and Credit-Only Lattice 

  

* Includes observations only up to June 2013 

EXTRA OPTION VALUE DUE TO STOCHASTIC INTEREST RATES 

Next, we illustrate how stochastic interest rates impact the value of the embedded option. For exposition, we construct a 
hypothetical callable bond with semi-annual payment frequency, five years to maturity, and 50% loss given default (LGD). The 
embedded call option is Bermudan, with strike price equal to par. We use an upward sloping yield curve and set the mean 
reversion and volatility parameters (ߪሻ equal to 5% and 1%, respectively. The level of yield curve is such that a bond with default 
probability (PD) equal to 20 bps is priced around par. Given this information, we use the two lattice models to value bonds by 
varying coupon and default probability.  Table 5 shows these valuation results, from which we can see that: 
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» the extra option value is maximum when the underlying bond is around par, and  

» the extra option value is higher for bonds with lower default probability. 

 

Table 5  

Extra Option Value Due to Stochastic Interest Rates in Credit-Interest Lattice  

CREDIT-ONLY LATTICE CREDIT-INTEREST LATTICE 
EXTRA OPTION VALUE DUE TO STOCHASTIC 

INTEREST RATES 

 1 YEAR PD 

5 BPS 10 BPS 20 BPS 100 
BPS 

5 BPS 10 BPS 20 BPS 100 
BPS 

5 BPS 10 BPS 20 BPS 100 BPS 

Coupon =
3%

Bond 
Value 92.19 92.08 91.88 90.24 92.02 91.92 91.72 90.13 

0.17 0.17 0.16 0.11 
Option 

Value 0.00 0.00 0.00 0.00 0.17 0.17 0.16 0.11 

Coupon =
4%

Bond 
Value 96.61 96.50 96.28 94.55 96.03 95.94 95.74 94.15 

0.57 0.56 0.53 0.40 
Option 

Value 0.00 0.00 0.00 0.00 0.57 0.56 0.53 0.40 

Coupon =
5%

Bond 
Value 100.73 100.69 100.56 98.85 99.38 99.31 99.15 97.73 

1.34 1.38 1.41 1.12 
Option 

Value 0.30 0.22 0.12 0.01 1.64 1.60 1.53 1.13 

Coupon =
6%

Bond 
Value 101.22 101.21 101.18 100.72 101.17 101.15 101.09 100.27 

0.05 0.06 0.09 0.45 
Option 

Value 4.22 4.11 3.90 2.45 4.27 4.17 3.99 2.90 

 

 Figure 25 displays the extra option value for the callable bonds in our sample. Similar to what we stated above, the value peaks 
when the underlying bond price is around par. These results show that the impact of stochastic interest rates on the option value 
depends on the credit riskiness of the bond, as well as the level of interest rates relative to the coupon. 

Figure 25 Extra Option Value vs. Underlying Bond Price (Model Price) 
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4.3 Risk Integration Results 
We perform the risk integration study to compare the bottom-up approach implemented in the MDL with a traditional top-down 
approach. In the following section, we describe the construction of test portfolios and the computation of their risks using the top-
down and bottom-up risk integration approaches. 

TEST PORTFOLIOS’ CONSTRUCTION 

Starting with the full sample described in Section  3.1, we construct vanilla and callable bond portfolios separately for the following 
two periods: 

» June 2006: High interest rate environment 
» June 2011: Low interest rate environment 

 
As the interest rate environments before and after the financial crisis are significantly different, we perform validation exercises for 
both periods to help us better understand the impact of interest rate levels on risk integration results.  Table 6 presents the 
description of the test portfolios used in the study and  Figure 26 displays the zero-EDF yield curves as of the analysis dates. It 
should be noted that the bonds constituting these portfolios are actual world bonds trading in the market. Also, the analysis is 
done using CDS-implied credit risk parameters. 

 
Table 6  

Summary Statistics of Test Portfolios for Risk Integration 

ANALYSIS DATE  INSTRUMENT TYPE NUMBER OF BONDS REMAINING MATURITY (YRS) COUPON PD LGD RSQ 

June 2006 

Vanilla 1,898 7.32 yrs 5.71% 10 bp 59% 39% 

Callable 323 8.95 yrs 5.24% 9 bp 56% 42% 

June 2011 
Vanilla 2,099 6.62 yrs 5.72% 47 bp 57% 32% 

Callable 699 17.38 yrs 5.88% 86 bp 50% 32% 

 

Figure 26 Yield Curve as of Analysis Date 
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TOP-DOWN VERSUS BOTTOM-UP APPROACHES TO RISK INTEGRATION 

Once we select the test portfolios, we run them in RiskFrontier to obtain their Unexpected Loss (UL) estimates using the credit-
only lattice, the interest rate-only lattice, and the MDL, which implements the bottom-up approach.9 The credit-only lattice model 
measures the credit-only component of the portfolio risk, assuming no interest rate risk (the interest rates are held deterministic). 
Similarly, the interest rate-only lattice model measures the interest rate risk-only component of the portfolio risk, assuming no 
credit risk. Since RF does not allow analyzing instruments with zero credit risk, we set the default probability (PD) equal to 0.1 bps 
(the lower bound in RF) to ensure that there is virtually zero credit risk and the interest rate-only lattice truly captures the interest 
rate-only risk component. The standalone credit and interest rate risk measures are then combined using the portfolio variance 
formula to calculate the UL for the top-down approach as: 

௧௢௣ௗ௢௪௡ܮܷ ൌ ටܷܮଶ஼௥௘ௗ௜௧௢௡௟௬ ൅ ଶூோ௢௡௟௬ܮܷ ൅ 2 ∗ ௖௥௘ௗ௜௧,ூோߩ ∗ ஼௥௘ௗ௜௧௢௡௟௬ܮܷ ∗  ூோ௢௡௟௬ܮܷ

 
Here ߩ௖௥௘ௗ௜௧,ூோ is the correlation parameter between credit and interest rate risks. It is estimated within the Moody’s GCorr Macro 
framework. 

 Table 7 shows the standalone ULs as well as the integrated ULs using the top-down and bottom-up approaches under the 
assumption of zero correlation between credit and interest rate risks.  Table 8 shows similar results for 2011 portfolios when using 
the GCorr Correlation parameter, which is positive during our test period. 

 
Table 7  

Risk Integration Results Assuming Zero Correlation ሺߩ௖௥௘ௗ௜௧,ூோ ൌ 0ሻ 

ANALYSIS DATE  INSTRUMENT TYPE CREDIT-ONLY  UL IR-ONLY UL TOP-DOWN UL BOTTOM-UP UL % DIFFERENCE IN UL 

June 2006 
Vanilla 1.04% 4.48% 4.78% 4.08% 17.18% 

Callable 1.30% 3.59% 3.92% 4.08% -3.82% 

June 2011 
Vanilla 2.15% 0.43% 2.20% 2.12% 3.58% 

Callable 2.49% 0.03% 2.50% 2.96% -15.37% 

 
Table 8  

Risk Integration Results With GCorr Correlation ሺߩ௖௥௘ௗ௜௧,ூோ ൌ 0.15ሻ 

ANALYSIS DATE  INSTRUMENT TYPE CREDIT-ONLY  UL IR-ONLY UL TOP-DOWN UL BOTTOM-UP UL % DIFFERENCE IN UL 

June 2011 
Vanilla 2.15% 0.43% 2.27% 2.14% 6.30% 

Callable 2.49% 0.03% 2.51% 3.40% -25.94% 

 
Notice, the top-down approach overstates risks for vanilla bond portfolios, while understating risk for callable bond portfolios. The 
reason for overstating vanilla bond portfolio risk in the top-down approach is due to inappropriately accounting for interest rate 
risk in the default state. On the other hand, imprecise accounting for call options exercised at low credit quality or default states 
leads to understating the risks for callable bond portfolios. 

With correlation between credit and interest rate risks, the error in UL is more pronounced: the vanilla bond portfolio UL error 
increases from 3.6% to 6.3%, whereas, for the callable bond portfolio, the error jumps from -15% to -26%. The increase in error is 
due to higher probability of the states where the top-down approach incorrectly accounts for the interest rate risks for vanilla 
bonds or call decisions for callable bonds. Further, the magnitude of the error depends on the interest rate environment. These 
results demonstrate that, for a portfolio sensitive to both credit and interest rate movements, the bottom-up approach 
implemented in the joint lattice is definitely better in assessing portfolio risks than a top-down approach. 

  
                                                                 
9 Portfolios are run with 1-year horizon and 106 simulation trials. 
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5. Conclusion 

A financial institution’s portfolio typically includes instruments such as corporate bonds, which are subject to both credit and 
interest rate risks. Since these two risks are generally the most important risk types driving loss, their accurate assessment is 
integral for the stability and profitability of the institution. When top-down approaches to risk integration are used for these 
portfolios, the computed risk measures are not reliable, as they do not account for the interaction between these two risks. In such 
cases, a bottom-up approach, as implemented in the MDL, is better suited for accurately modeling portfolio risks. 

In this paper, we demonstrate the effectiveness of the MDL in modeling credit and interest rate risk together. Our study employs a 
simple empirical validation focusing on the valuation of a large sample of corporate bonds. We show that the joint lattice model 
within RiskFrontier produces valuations that compare well with market transaction prices. The price differences between the 
model and the market are within an acceptable range for bonds with different ratings and industries. 

Next, we show how the bottom-up approach implemented in the joint lattice is better-suited for assessing portfolio risks. The 
findings are robust across different interest rate environments, instrument types, and the level of correlation between credit and 
interest rate risks. Through our analysis, we show how a top-down approach to risk integration may not be appropriate for credit 
risk portfolios also sensitive to interest rate movements. 

Finally, we provide important insights into the variation of the extra option value due to stochastic interest rates. We illustrate 
that the extra option value is highest when the underlying bond price is near par and is lower for prices above or below par. 
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Appendix 

Benchmark Construction 
Our deeper analysis of the “close price” benchmark reveals that, while the benchmark is reasonable to assess the model 
performance, it may not be ideal for assessing the impact of interest rate risk on credit risky instruments. In particular, we find that 
“close price” benchmarks of similar bonds differ significantly across time. Given that these bond pairs have exactly same the 
characteristics, we believe that observed price differences could potentially arise under the following circumstances:  

» The corporate bond market is not deeply liquid. As a consequence, the prices of securities traded in this market reflect an 
illiquidity discount. Depending on the open interest of these bonds in the market, the illiquidity discount varies. Also, 
considering the possibility that dealers transact over-the-counter with interested counterparties, there is the possibility of 
a lack of real-time price transparency, since counterparties can only reach out to a limited number of liquidity providing 
dealers. This market inefficiency could potentially result in significant deviation between traded prices and the fair values.  

» After analyzing the transaction prices for an extended period of time, it appears that there are periods when one of the 
bonds in a similar bond pair exhibits relatively higher trading activity than the other. However, there is no systematic bias 
with respect to the volume of these bonds traded across time. It could be simply that these differences are due to some 
bond-specific information in the market, as the issuer-level information affects both bonds (for bonds with similar 
covenants and seniority). The bond-specific information could relate to the supply and demand of the bonds, caused by 
factors such as hedging needs and portfolio rebalancing. If the market participants trade bonds to change their portfolio 
composition, consistent with their mandate and, given that all market participants do not update their portfolios at the 
same time, there will be differences in the trading activity of such bonds. Due to these factors, the supply of similar 
bonds may not be the same, resulting in dealers applying different illiquidity discounts and, hence, different traded prices. 
We would reach similar conclusions if we assume there is no inherent (bond-specific) information causing the difference 
in prices. In that case, we could attribute the differences to the supply-demand imbalances caused by changes in the 
portfolio compositions of various market participants.  

To mitigate the impact of these issues on our comparison of the two lattice models, we explore constructing benchmarks using 
additional transaction price data. We believe using the collective information from a host of market participants can produce a 
benchmark that is less sensitive to short-term, demand-supply fluctuations. We constructed our first set of benchmarks as the 
average of prices for all transaction on a given day and a specific number of transactions in the past. We refer to these benchmarks 
as “float” benchmarks. We specify a lag term to denote the number of previous transactions used for estimating the benchmark. 
So, for example, float benchmark price with lag value of three on September 1, 2013 would be the average of all transaction prices 
reported on September 1, 2013 and the last three transaction prices in the past. Given limited transaction data for some bonds, 
using an average price helps in establishing a reasonable price estimate for a given day. However, specifying an appropriate lag is 
important, as a higher lag value may result in too much smoothing of prices and average out any price variation due to changes in 
market risk parameters. Our careful analyses of similar bond pairs show that using the lag value of three is most appropriate for 
minimizing the deviation in prices of similar bonds while retaining systematic price fluctuations.  

We construct another set of benchmarks, considering that the benchmark price is an average of a fixed number of transactions 
counting from the last transaction on the subject date. We refer to these benchmarks as “fixed” benchmarks. As before, this 
strategy also uses information from past transactions. However, the important difference is that we use only a fixed number of 
previous transactions, as opposed to an arbitrary number of transactions, as in the case of float benchmarks (float benchmarks use 
all the transactions available on the subject date. i.e., for a lag of three transactions, if there are 10 transactions on the subject 
date, float benchmark would end up using 13 transactions to estimate the benchmark price. But, a fixed benchmark with lag of 
three uses only the last three transactions on the subject date). This approach has one notable advantage, it is less likely to use 
price transactions from a different regime, especially for bonds with extremely limited transactions. Based on our analysis, a lag 
value of three provides the most optimal results in terms of lowering the price deviations of similar bonds, while retaining 
systematic price fluctuations. We also notice that longer lags result in a lower deviation of prices for similar bonds, but they 
inevitable smoothen the price time series and discard most of its features  

Last, we construct another set of benchmarks where we use the filtered bond transaction data and retain only transactions with 
larger trade sizes. We refer to this as the “quantile filtered” approach. The rationale here is that the prices of the transactions with 
smaller trade size would carry a higher illiquidity discount, since the trades are usually executed between dealers and 
counterparties. Large trades are typically executed between dealers, and, hence, these trades tend to reflect the true fair value of 
bonds. We construct float and fixed benchmarks using this filtered dataset. Although the rationale for filtering appears 
conceptually sound, these benchmarks produced sub-optimal results, primarily because of the limited transaction data. For 
example, a float benchmark with lag of three on the filtered transaction dataset might potentially result in using transaction prices 
months apart.  
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Table 9 shows the mean absolute deviation of the benchmark prices constructed using various approaches.   

 

Table 9  

Mean Absolute Deviation of Benchmark Prices of Similar Bond Pair with CUSIPS 36966RCS3 and 36966RCY0 

LAG FIXED QUANTILE FILTERING - FIXED FLOAT QUANTILE FILTERING – FLOAT CLOSE 

1 1.5665 1.3419 1.1612 0.9705 

1.6651 
3 1.0993 1.0201 0.9890 0.7833 

5 1.0274 0.8535 0.9194 0.7681 

10 0.8315 0.6454 0.7360 0.6252 

 

Figure 27 shows the benchmark price dynamics of the similar bond pair for varying levels of lag under four different benchmark 
construction settings. It is evident from Figure 27 that there is information loss with higher lag variables. Also, as mentioned 
earlier, there is a clear smoothing of price time series under the quantile filtering setting. The relative benefit of using the newly 
constructed benchmarks is, at best, marginal. Using the bond prices in the subject dataset, the average absolute difference 
between the close price benchmark and the fixed benchmark with lag of three is only $0.42. Based on these results, we use the 
float benchmark with lag of three to compare against our model prices generated using credit-only and credit-interest lattice.  

Figure 27 Fixed and Floating Benchmarks with and without Applying Quantile Filtering 
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