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Research Motivation

ML algorithms improve prediction accuracy over traditional statistical models
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Research Motivation

ML algorithms are often criticized as black-box models

This is a cat.

Black-box Explanation

This is a cat:
• It has fur, whiskers, and claws
• It has this feature:

Explainable AI (XAI) 
Explanation
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Agenda

2. Global Interpretability
Feature Importance
Feature Effect
Feature Interaction

3. Local Interpretability

1. Problem Setting

4. Take-aways & Questions

Dataset
Generalized Additive Model (GAM) vs  XGBoost (XGB) 

Local Interpretable Model-agnostic Explanation (LIME)
Shapley value

Alternate GAM Model



1 Problem Setting
A Probability of Default Model
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Problem Setting 
Dataset

Category Ratio Name Ratio Description

Activity
A03 Inventories to Sales
A08 Current Liabilities to Sales
A18 Change in Working Capital over Sales

Debt Coverage DC01** EBITDA over Interest Expense

Growth
GROW01** Sales Growth: Sales(t)/Sales(t-1) – 1
GROW04 Change in ROA

Leverage
LEV12** Retained Earnings to Current Liabilities
LEV13** LT Debt to (LT Debt plus Net worth)

Liquidity LIQ05** Cash and Marketable Securities to Total Assets
Profitability PFT01** ROA/ Net Income to Total Assets
Size SIZE01** Total Assets
Sector SECTOR 14 Sectors
DUMDEF PD Default flag (1=default)

**  feature of interest (to be covered later)
**  important features (to be covered later)
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Problem Setting
Data Processing

Raw Data

Train/Test Split

Missing Imputation

Transformation 
(LOESS / Smoothing)

Transformed data



Machine Learning Interpretability Techniques in Credit Risk Modeling 9

Problem Setting 
Methodology and Results

3 pts.

GAM XGB

AR:   0.579 (train)   
0.575 (test)

AR:   0.700 (train)   
0.605 (test)

𝑃𝑃𝑃𝑃 = 𝜙𝜙(𝛽𝛽0 + 𝛽𝛽1 𝑇𝑇1 𝑥𝑥1 + ⋯+ 𝛽𝛽𝑁𝑁𝑇𝑇𝑁𝑁 𝑥𝑥𝑁𝑁 )

A generalized linear 
model (GLM) on 

transformed predictors 
(𝑇𝑇𝑖𝑖 𝑥𝑥𝑖𝑖 )

𝑇𝑇𝑖𝑖 𝑥𝑥𝑖𝑖 : Loess transformation

Ensemble tree 
methodology involving 

both bagging and 
boosting



2 Global 
Interpretability
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Global Interpretability

Feature Importance
Permutation Test

Feature Effects
Partial Dependence 
Plots (PDP)
Accumulated Local 
Effects (ALE)

Alternate GAM model
Splines 

Interactions

Feature Interaction
Friedman’s H-statistic
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Permute feature(s) Change in AR Rank features

Most important 
features 
produce the 
largest difference 
in AR

Permutation Test

Global Interpretability
Feature Importance
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Global Interpretability
Feature Importance: Permutation Test

• The top 5 important features (LIQ05, DC01, GROW01, . .) are the same

Im
po

rt
an
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re
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es

• More area is covered by bar chart in XGB vs GAM

• SIZE01 becomes more important in XGB vs GAM
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Global Interpretability
Feature Effects: Partial Dependence Plot (PDP)

PDP shows the marginal/partial effect of feature(s) on the predicted outcome.
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Global Interpretability
Feature Effects: Partial Dependence Plot (PDP)

LIQ05, LEV13 were among the top important (also common) features for both GAM and XGB

Analogous behavior (GAM and XGB)
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Global Interpretability
Feature Effects: Partial Dependence Plot (PDP)

Size01 becomes more important in XGB, and A03 has higher AR drop from permutation test in XGB 

Non-analogous behavior (GAM vs XGB)
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Global Interpretability
Feature Effects: Accumulated Local Effect (ALE)

1. Marginal distribution

2. Less informative if features are correlated

3. Global view of global effects 

PDP
1. Conditional distribution

2. Considers correlation of features

3. Global view of sum of local effects 

ALE

PDP ignores correlations 
among features

ALE solves this problem 
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Global Interpretability
Feature Effects: PDP vs. ALE--XGB

PDP and ALE show different effects of average PD changes in response to changes in PFT01
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Global Interpretability
Feature Interaction

H-stat

All Way

Two Way

Interaction of one 
variable with rest of 
variables

Interaction of two 
variables (at a time)

Friedman’s H-statistic
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**
**

**

** **

Global Interpretability
Feature Interaction: Friedman’s H-statistic 

• All Way: Strong interaction of PFT01, DC01, LIQ05, GROW01 with rest of variables

• Two way: Pairwise SIZE01:PFT01, PFT01:DC01, LIQ05:GROW01. . . strong interaction observed
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H-stat

Permutation test PDP and ALE

Importance Effects

Interactions
GAM vs XGB

Model Performance

Global Interpretability
Alternate GAM Model

Alternate GAM model



Machine Learning Interpretability Techniques in Credit Risk Modeling 22

Global Interpretability
Alternate GAM Model: Non-linearities

Original GAM Original GAM + Splines

AR: 0.579 (train) 
0.575 (test)

AR: 0.589 (train) 
0.584 (test) 1 pts.
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Global Interpretability
Alternate GAM Model: Interactions

AR: 0.589 (train) 
0.584 (test)

Original GAM Original GAM + Splines

AR: 0.579 (train) 
0.575 (test) 1 pts. AR: 0.594 (train) 

0.589 (test)

Original GAM +
Splines + Interactions

1.5 pts.



3 Local 
Interpretability
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Local Interpretability
Local Interpretable Model-agnostic Explanations (LIME)

Advantage:
• Conceptually Intuitive 
• Easy to interpret

Disadvantage:
• Simulating “good” nearby points
• Unstable results observation of interest

• Simulate points near specific observation
• Generate model predictions at these points
• Use model predictions as Y variable
• Weight new observations by proximity
• Build weighted linear regression (or other interpretable model)
• Interpret the local surrogate model

Molnar, C. (2018)
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Local Interpretability
LIME Example

Ratio Value
A03 0.85
A08 1.04
A18 1.29
DC01 2.69
GROW01 0.95
GROW04 1.12
LEV12 1.86
LEV13 0.63
LIQ05 1.77
PFT01 2.40
SIZE01 1.05
SECTOR Business 

Services

Firm Profile
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Local Interpretability

Unlike LIME, uses the same original model in a local space.

Originally from game theory to attribute the value of a team 
effort to individual members

Explains:
• Individual vs. Average PD
• Feature contribution towards the difference

Shapley Value
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Local Interpretability
Shapley Value Example

Firm Profile

Ratio Value
A03 0.85
A08 1.04
A18 1.29
DC01 2.69
GROW01 0.95
GROW04 1.12
LEV12 1.86
LEV13 0.63
LIQ05 1.77
PFT01 2.40
SIZE01 1.05
SECTOR Business 

Services



4 Take-aways
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Take-aways

Interpretability techniques can help explain and predict black box 
model output

Model-Agnostic methods can be applied to any model enabling a 
broader range of methodologies

Interpretability techniques can help make today’s black boxes 
tomorrow’s interpretable models

1

2

3

4 The tradeoff between interpretability and accuracy is real and can 
only be mitigated
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Appendix
Partial Dependence Plots

• The partial dependence function is defined as:

𝑥𝑥𝐶𝐶
other features used in the model𝑥𝑥𝑆𝑆

feature(s) of interest

integrate over all xC

Accumulated Local Effects

Conditional distribution
where:

Differential/change 
in PD
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Appendix
H-statistic

• Two Way:

H-stat 
(ranges from 0 to 1)

prediction

2-dim PDP

1-dim PDPs

• All Way:

(n-1) dim PDP1-dim PDPs
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