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Abstract

This paper presents a framework for credit portfolio modelling where 
exact analytical solutions can be obtained for key risk measures such as 
portfolio volatility, risk contributions to volatility, Value-at-Risk (VaR) 
and Expected Shortfall (ES). The framework is generic and can accom-
modate structural, reduced-form and macroeconomic-type models. It is 
also flexible enough to allow for multi-period models with credit transi-
tions and other risks such as credit spread, interest rate, FX or instrument 
optionalities such as loan pre-payment. Furthermore, the same mathemat-
ical results can be used to define an importance sampling algorithm that 
can be used to dramatically accelerate the Monte Carlo simulations that 
are commonly used to calculate the portfolio loss distribution. Another 
key result from this framework is the ability to run reverse stress testing 
analyses analytically. Finally, these solutions can also be readily used to 
obtain approximation to VaR/ES through the saddlepoint method.

1 Introduction

One of the cornerstones of credit portfolio management is the estimation of the
probability distribution of losses. Due to the complexity of the inter-dependency
between the different assets in the portfolio numerical simulations (Monte Carlo)
are generally used to estimate the loss distribution. For an overview of these
simulation techniques see [1].

One of the main drawbacks of using Monte Carlo is that it is computationally
very intensive, especially when trying to calculate the value of risk measures in
the tail of the distribution such as VaR/ES. The lack of convergence of Monte

∗corresponding author (gustavocqd@gmail.com). Any views and opinions expressed in the
work are the author and do not necessarily represent the policy or position of any HSBC
Group Members
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Carlo techniques, even after a large number of simulations, is especially acute
when attempting to allocate risk measures (such as VaR/ES) to the different as-
sets in the portfolio. Because of this limitation, often portfolio managers choose
to rely on risk measures that can be calculated analytically such as the Expected
Loss (EL), or by resorting to analytical approximation of the probability dis-
tribution of losses in the portfolio. One of the better known approximations to
the portfolio loss distribution is the large homogeneous portfolio approximation
(LHP) introduced in [2] and which forms the basis for Internal Rating Based
(IRB) RWA formula in the Basel regulation [3]. Other analytical approxima-
tions to the loss distribution use specific probability distribution assumptions
like in the case of CreditRisk+ [4], or use other numerical approximations such
as the saddlepoint method [5]. The gain in computation speed and numerical
tractability, however, comes at the expense of a loss in accuracy in the calcula-
tion of the different risk measures.

There are three main families of credit models used for Monte Carlo simu-
lations (see [6] for a brief review of these different approaches). The first family
is the structural models which are based on the ground-breaking work carried
out by Robert C. Merton [7]. These models attempt to explain the default pro-
cess assuming that the asset price of a given institution is a stochastic process,
and that if the price falls below a default barrier within a given time horizon
(typically one-year), the institution will default. There have been numerous ex-
tensions to the original work by Merton, refer to [8] for some examples of such
extensions. Although it is possible to extend structural models to multi-period
settings, typically a single-period simulation is used in order to reduce the com-
putation time. In recent years, however, and because of the regulatory focus on
stress testing and the implementation of the IFRS9 accounting rules, the need
for multi-period credit models is becoming more and more apparent to portfolio
managers.

The second family of credit portfolio models are known as “reduced-form
models” of default. These models do not attempt to explain the underlying
process of the firms’ default, but instead assume that the time to default is a
random variable, and that the defaults occur with some intensity (or hazard
rate) which is modelled as a stochastic process. This is then calibrated to
observed market data such as bond or CDS spreads term structures. This
makes these types of models a natural choice when multi-period credit portfolio
analysis and also make them very popular for pricing credit derivatives [9]. See
[10] for an empirical comparison of these two families of models. The third
family of models use an econometric approach to link macroeconomic variables
to the probability of default (or credit transitions, credit spreads, pre-payment
rates, etc.) of the different names/assets in the portfolio. A well known model
using this approach is McKinsey’s Credit Portfolio View (see [11] and [12] for
details).

In the first two families of models, the systemic dependency of default (or
credit transitions) is typically captured using factor models. Under this ap-
proach, once the systemic risk factors are determined the default (or transition)
probability of each firm/account in the portfolio becomes independent of each
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other. This concept is known as “conditional independence”.
In the third family of models, the systematic risk is usually assumed to be de-

termined by the macro-economy. Instruments become independent conditional
on a given macroeconomic scenario. This approach is becoming more popular
as it allows to build a natural bridge between credit portfolio management and
stress testing and IFRS9. Moreover, and quoting a staff the Federal Reserve of
New York [13]:

”In principle VaR models can be thought of as the result of thousands of
individual scenarios, weighted by their probability. In practice however the dis-
tributions are not tied to real-world variables other than the observed empirical
distributions of the values of various assets.”

In this paper we present an analytical framework that allows us to calculate
portfolio credit risk measures analytically. The only assumption made is that
of conditional independence, which is common to all three families of models
covered above. We will show that thanks to the generality of this analytical
framework we will be able to work beyond the single-period default/no-default
setting and extend it to a multi-period credit model with credit transitions,
spread-risk, pre-payment risk, etc.

We start deriving an analytical expression for the portfolio volatility using
two well-known techniques in probability theory, the law of total variance; and
the moment generating function (MGF) for the loss probability distribution.
This will allow us to calculate the variance (and other moments) of the loss
distribution analytically and with the same ease as EL.

We will also show how we can calculate the risk contributions (RC) to the
portfolio loss volatility and how these results can be used to perform fast risk-
based pricing and optimal portfolio allocation. We will also show how we can
extend the results obtained in the derivation of the loss volatility using the MGF
method to calculate risk contributions to VaR/ES analytically. Another advan-
tage of this approach is that the reverse stress testing results follow immediately
from this analysis. Where reverse stress testing is defined as the most probable
combination of risk factors that determine a given loss in the tail.

In summary, this work presents a general framework for credit portfolios
that would allow us to calculate analytically:

• Credit Loss Volatility and risk contributions (RC)

• Optimal portfolio allocation and fast risk-based pricing (e.g. RAROC)

• Tail-risk contributions (TRC) for the allocation of VaR/ES

• Reverse stress testing

This framework can also be used to define an ”optimal” importance sam-
pling to accelerate the convergence of Monte Carlo simulation in the calculating
of VaR/ES. Lastly, it can be used to extend the solutions under the saddle-
point approximation to a multi-period credit portfolio models including credit
migration and other risk types.
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2 Analytical Solutions in Credit Portfolio Mod-
elling

In this section we present our analytical framework, starting by deriving an
expression for the calculation of the volatility for the distribution of portfolio
losses using two different methods: 1) The law of total variance, 2) The moment
generation function (MGF).

We then show how the loss volatility can be allocated to each instrument in
the portfolio and how these ”Risk Contributions” can be used to perform fast
risk-based pricing calculations and portfolio optimisation.

We then revisit the MGF method and explore how the results obtained can
be interpreted as risk measures conditional on a given loss amount. These are
then used to calculate the tail-risk contributions and perform reverse stress
testing.

Finally, we discuss how to approximate the entire loss distribution using the
saddlepoint approximation and how significantly accelerate the Monte Carlo
simulation using optimal importance sampling.

2.1 Portfolio Loss Definition

We start the derivation with the formal definition of credit loss. Assuming
conditional independence we can define the portfolio loss as:

L =

∫
Lzdz

where z represents the ”state of the world” (or macroeconomic scenario). If
z is a discrete random variable then:

L =

Z∑
z=1

wzLz

Where we have discretised the integral over the probability states into Z
buckets and therefore each state of the world occurs with probability wz. The
loss Lz under scenario z can be defined as:

Lz =

N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

Vi,s′→s,t|zIi,s′→s,t|z (1)

Here Ii,s′→s,t|z is an indicator function that, conditional on state of the
world z, is equal to one if the obligor i transitions from credit state s′ to credit
state s at time t and zero otherwise. Vi,s′→s,t|z is the value of the loss due
to instrument i transitioning from credit state s′ to credit state s at time t
conditional on state of the world z. It is important to notice that this loss is
in general time dependent, capturing the effect of amortisations or utilisation
schedules, pre-payment, or the exposure term structure in the case of derivative
transactions. The loss also depends on credit quality which might affect the
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utilisation level on revolving credit lines or the risks of a firm refinancing a loan
when its credit quality improves. The dependency of the loss level on state of
the world aims to capture the effect of macroeconomic indicators on the value
of the instrument, e.g. the level of credit spreads, interest rates or FX.

The last credit state S represent the state of default which may or may not
be an absorbent state. The value of the loss when instrument i defaults at time
t is:

Vi,s′→S,t|z = LGDi,t · ei,s′,t|z (2)

where ei,s′,t|z is the exposure of the instrument n at time t, given credit state
s′ and conditional on state of the world z. In this case, the Loss Given Default
(LGD) is time dependant, to capture the fact that the recovery amount could
depend on the time taken for the recovery process to complete.

More generally, the loss due to a credit transition from credit state s′ to
credit state s at time t is:

Vi,s′→s,t|z = ei,s,t|z − ei,s′,t|z (3)

The value of the instrument ei,s,t|z = f (nit, s, t, Ti, z) is a function of ni,t,
the number of units of instrument i at held at time t. In the case of loans, this
could represent the exposure amount or the Exposure at Default (EAD). The
value also depends, of course, on credit state s, maturity Ti and the state of the
world z (which as mentioned before could determine the level of credit spreads,
interest rates, FX or pre-payment).

2.1.1 Portfolio Loss Risk Measures

In this section we introduce a number of commonly used risk measures and
describe how these are related to the distribution of probability of losses of a
portfolio. We start with the most commonly used and better know risk measure,
the expected loss (EL). In order to be able to define the EL in a multi-credit
state and multi-period context let’s first define pi,s′→s,t|z as the probability of
transition from credit state s′ to credit state s at time t conditional on state of
the world z and starting credit state s0. To calculate pi,s′→s,t|z, we first need
to know what is the probability of being in credit state s′ at time t conditional
on initial state s0 at time t0. For this, let’s say that tpi,s′→s,t|z are the entries
of the credit transition matrix at time t and conditional on z. The probability
of transition between states after t− 1 steps of the process is:

ctpi,s0→s,t−1|z =

S∑
s1=1

S∑
s2=1

· · ·
S∑

st−1=1

tpi,s0→s1,t1|z ·tpi,s1→s2,t2|z ·...·tpi,st−1→s,t−1|z

That is, the cumulative transition matrix from initial credit state s′ at time
t0 to state s at period t calculated as the product of the transition matrices for
each period. Now we can calculate pi,s′→s,t|z as:
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pi,s′→s,t|z = ctpi,s0→s,t−1|z · tpi,s′→s,t|z (4)

With these definitions the EL can be calculated as the average loss:

EL ≡ E [L] =

Z∑
z=1

wz

N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

Vi,s′→s,t|zpi,s′→s,t|z (5)

Another commonly used risk measure is the portfolio loss volatility which
can be defined as the square root of the portfolio loss variance:

σ (L) ≡
√
σ2 (L)

And the variance is defined as:

σ2 (L) ≡ E
[
L2 − EL2

]
Next we define the Value-at-Risk or VaR as:

V aRβ (L) ≡ inf {l ∈ R : FL (l) ≤ β}

In other words, the VaR is the quantile of the probability of loss distribution
FL (l), such that the probability of losing more than l is less than or equal to β.
The VaR is then defined at a time horizon T and confidence level β.

A risk measure that is related to the VaR is the expected shortfall ES, which
is sometimes referred to as conditional VaR or CVaR. The ES can be defined
as:

ESβ (L) ≡ E [L|L > V aRβ (L)]

In other words the ES is the expected loss conditional on losses being larger
than VaR.

The loss distribution could be discrete, for example if only defaults are taking
into account as a source of losses; or continuous, if risks such as credit spreads
are taken into account. Even if the loss distribution is discrete a continuous
portfolio loss probability density can be defined as:

f (L) ≡
K∑
k=1

pkδ (L− Lk)

where lk represent a possible portfolio loss and that has probability pk, k =
1, . . . ,K. K is the total number of possible loss combinations in the portfolio
and δ (x− x0) is the Dirac delta function. So it is always possible to define loss
probability FL (l) as:

FL (l) ≡ Prob (L ≤ l) =

∫ l

−∞
f (L) dL

And the tail loss probability:

6



PL (l) ≡ Prob (L > l) =

∫ ∞
f

f (L) dL

In general, it is not possible to obtain a closed form solution for f (L) unless
stringent simplifying assumptions are made such as those in [2]. Typically, credit
portfolio models would hence resort to using Monte Carlo or other numerical
techniques (such as the saddlepoint method [5]) in order to approximate the
loss distribution. In the next section we will show how it is possible to calculate
the portfolio volatility and the risk contributions to loss volatility analytically
under the assumption of conditional independence. Later, we will also show
that although exact closed form solutions for VaR/ES do not exist, once an
estimate for this is obtained, we can calculate risk contributions to these risk
measures exactly.

2.2 Portfolio Loss Volatility

The volatility of the loss distribution (sometimes also referred to as the unex-
pected loss) was defined in the previous section as:

σ (L) =
√

E [L2 − EL2]

In this section we will show two different methods to calculate a closed form
solution for this risk measure. The first method is based on the Law of Total
Variance and is easier to derive, the second method is based on the moment
generating function and requires a bit more effort. The increase in complexity
of the second method is justified as it serves a number of purposes. It allows us
to verify the solutions obtained under the first method. It can also be used to
calculate closed form solutions for higher moments of the loss distribution (such
as the skewness and kurtosis). It also allows us to calculate other moments of
the loss distribution conditional on a given loss level. For example we show
that the conditional expected loss can be used to allocate the VaR/ES to each
instrument in the portfolio. Finally, the conditional moments can also be used
to perform analytical calculations for reverse stress testing.

2.2.1 Method 1: Law of Total Variance

We can use the law of total variance and the assumption of conditional inde-
pendence given a state of the world z to obtain a closed form solution of the
portfolio loss volatility. We can write the variance of the probability of portfolio
cumulative losses σ2 (L) up to period T as:

σ2 (L) = Ez [V ar (L|z)] + V arz (E [L|z]) (6)

Starting from the first term in equation (6) and using the fact that con-
ditional on z the expectation E [L|z] and variance V ar (L|z) are additive we
get:
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Ez [V ar (Lz)] =

Z∑
z=1

wzV ar (Lz) =

Z∑
z=1

wz

(
N∑
i=1

T∑
t=1

E
[(
L2
z

)]
− E [(Lz)]

2

)
=

=

Z∑
z=1

wz

N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

[
V 2
i,s′→s,t|z · pi,s′→s,t|z −

(
Vi,s′→s,t|z · pi,s′→s,t|z

)2]
For the second term, using the definition of variance of a stochastic variable

and the fact that the mean loss is EL, we obtain:

V arz (E [Lz]) = Ez
[
(E [Lz]− EL)

2
]

=
Z∑
z=1

wz (E [Lz]− EL)
2

=

=

Z∑
z=1

wz

(
N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

Vi,s′→s,t|z · pi,s′→s,t|z − EL

)2

Now using the definitions

ELitz ≡
S∑

s′=1

S∑
s=1

Vi,s′→s,t|z · pi,s′→s,t|z

and

ELiz ≡
T∑
t=1

ELitz

ELz ≡
N∑
i=1

ELiz

ELt ≡
Z∑
z=1

wz

N∑
i=1

ELitz

we finally obtain:

σ2 (L) =

T∑
t=1

Z∑
z=1

wz

[
N∑
i=1

(
S∑

s′=1

S∑
s=1

V 2
i,s′→s,t|z · pi,s′→s,t|z (7)

−EL2
iz + (ELtz − ELt) (ELz − EL)

)]
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It is worth noting that the last term captures the temporal (time covariance)
dependency in the portfolio volatility. The intra-period variance at time t is
given by:

σ2
t (L) =

Z∑
z=1

wz

N∑
i=1

[
S∑

s′=1

S∑
s=1

V 2
i,s′→s,t|z · pi,s′→s,t|z (8)

−EL2
itz + (ELtz − ELt)

(
EL(t)

z − EL(t)
)]

where the superscript (t) indicates that the sum in the time index should be
performed up to time t:

EL(t)
z ≡

N∑
i=1

t∑
t′=1

S∑
s′=1

S∑
s=1

Vi,s′→s,t′|zpi,s′→s,t′|z

And EL(t) ≡
∑Z
z=1 wzEL

(t)
z .

2.2.2 Method 2: Moment Generating Function

Another way to obtain the variance of a probability distribution is using the
moment generating function (MGF) which is defined as:

MGFf(x) (α) ≡ E
[
eαf(x)

]
In the case of the loss distribution this becomes:

MGFL (α) = E
[
eαL

]
Using the fact that we are working under the framework of conditional in-

dependence we can write:

MGFL (α) =

Z∑
z=1

wzMz =

Z∑
z=1

wz

N∏
i=1

Mi|z (9)

Mi|z is, the conditional MGF for obligor i under state of the world z:

Mi|z = E
[
eαLi|z

]
Mi|z =

T∑
t=1

S∑
s′=1

S∑
s=1

eαVi,s′→s,t|zpi,s′→s,t|z

To calculate the moments of the loss distribution it is convenient to introduce
the cumulant generating function (CGF):

CGFL (α) = log (MGFL (α))
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The different cumulants kj with j = 1 being the mean of the loss distribution,
j = 2 the variance, j = 3 the skewness, j = 4 the kurtosis, etc. can then be
calculated as:

kj =
djCFGL (α)

dαj

∣∣∣∣
α→0

For example, for the first cumulant we have:

EL (α) =
1

MGFL (α)

dMGFL (α)

dα
(10)

or in terms of Mi|z:

EL (α) =

Z∑
z=1

wz
MGFL (α)

N∑
i=1

dMi|z

dα

N∏
j 6=i

Mj|z

or by multiplying and dividing by Mi|z:

EL (α) =

Z∑
z=1

wzMz

MGFL (α)

N∑
i=1

1

Mi|z

dMi|z

dα
(11)

And taking derivatives:

EL (α) =

Z∑
z=1

wzMz

MGFL (α)

N∑
i=1

Vi,s′→s,t|z
eαVi,s′→s,t|zpi,s′→s,t|z

Mi|z

In order to simplify the notation let us introduce the following ”tilted” tran-
sition probabilities (”tilted” in the sense of the Esscher transform [14]):

tpi,s′→s,t|z (α) = tpi,s′→s,t|ze
αVi,s′→s,t|z

Yi,s0,s′,t−1|z (α)

Yi,s0,s′,t|z (α)

with Yi,s0,s′,t|z (α) defined as:

Yi,s0,s′,t|z (α) =

S∑
s=1

· · ·
S∑

st−1=1

tpi,s0→s1,t|ze
αVi,s0→s1,t|z · ... · tpi,st−1→s′,t|ze

αVi,st→s′,t|z

with Yi,s0,s′,T |z (α) = 1. Note that using this definition we guarantee that
sum across the rows of the tilted transition matrix adds to one, and hence
these new matrices are proper transition matrices under a different probability
measure. The tilted probabilities of transitions at time t, conditional on initial
credit state s0 and z, become:

pi,s′→s,t|z (α) = ctpi,s0→s,t−1|z (α) · tpi,s′→s,t|z (α) (12)
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where ctpi,s0→s,t|z (α) are also defined in the new probability measure.
Now we can rewrite EL (α) in the more familiar form:

EL (α) =

Z∑
z=1

wz (α)

N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

Vi,s′→s,t|zpi,s′→s,t|z (α) (13)

with

wz (α) ≡ wzMz

MGFL (α)
(14)

This naming convention will become clearer later in section 3.1 when we use
these quantities to define the optimal change of measure that can be used to
accelerate Monte Carlo simulations. Of course, we have that, pi,s′→s,t|z (α) =
pi,s′→s,t|z and wz (α)→ wz as α→ 0.

Now we can calculate the variance of the loss distribution in a similar way
by taking the second derivative of the CGF.

σ2 (α) =
d2CGFL (α)

dα2
=

1

(MGFL (α))
2

(
MGFL (α)

d2MGFL (α)

dα2
−
(
dMGF (α)

dα

)2
)

=

=
1

MGFL (α)

d2MGFL (α)

dα2
− EL2 (α)

The only term we do not yet have an expression for is the second derivative
of the MGF. Using equation (11) we get:

d2MGFL (α)

dα2
=

d

dα

(
Z∑
z=1

wzMz

N∑
i=1

1

Mi|z

dMi|z

dα

)
=

=

Z∑
z=1

wzMz

N∑
i=1

(
1

Mi|z

dMi|z

dα

)2

+

Z∑
z=1

wzMz
d

dα

(
N∑
i=1

1

Mi|z

dMi|z

dα

)
=

=

Z∑
z=1

wzMz

[
EL2

z +

N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

V 2
i,s′→s,t|zpi,s′→s,t|z (α)−

−
N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

V 2
i,s′→s,t|zp

2
i,s′→s,t|z (α)

]
After rearranging the terms in the expression above the equation for the

variance becomes:
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σ2 (α) =

Z∑
z=1

wz (α)

[
N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

(
V 2
i,s′→s,t|z · pi,s′→s,t|z (α)

−EL2
itz (α)

)
+ EL2

z (α)

]
− EL2 (α)

Using the well known property of the variance σ2 (X) = E
[
(X − E [X])

2
]

=

E
[
X2
]
− E [X]

2
and setting α→ 0 we recover equation (7):

σ2 (L) =

Z∑
z=1

wz

[
N∑
i=1

T∑
t=1

(
S∑

s′=1

S∑
s=1

V 2
i,s′→s,t|z · pi,s′→s,t|z − EL

2
itz

)
+ (ELz − EL)

2

]

Higher moments of the loss distribution can be calculated in a similar man-
ner.

In order to illustrate the results presented in the following sections, a portfo-
lio consisting of 50 assets with a mixture of corporate and sovereign bonds was
chosen with holdings in each asset changing across 4 time periods (4 quarters
in this example). Figure 1 shows the holdings in each asset (as percentage of
total investment) across the 4 quarters and figure 2 shows these holdings split
by credit rating. For simplicity, the probabilities of states of the world are repre-
sented by a single latent variable (systemic factor) that affect the credit quality
of the issuer and which it is a assumed to be normally distributed. In a more
general case actual macroeconomic scenarios could be used instead as in [15].

2.3 Risk Contributions to Portfolio Loss Volatility

Now that we have derived a closed form expression for the portfolio volatility we
want to be able to allocated the result down to each instrument in the portfolio.
In other words, we want to be able to calculate the risk contributions to the
portfolio loss volatility. As already indicated in Section 2.1, the value of the loss
Vi,s′→s,t|z is a function of the ni,t, which can represent the number of units of
instrument i at time t:

Vi,s′→s,t|z = nit · V ∗i,s′→s,t|z (15)

where V ∗i,s′→s,t|z is the loss per unit of instrument (or per unit of exposure).

With this, we can now define the risk contribution (RC) to portfolio loss volatil-
ity as:

RCi (L) ≡ nit
∂σ (L)

∂nit

And taking the derivatives (see Appendix A), we get:
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RCi (L) =
1

σ (L)

T∑
t=1

[
Z∑
z=1

wz

(
S∑

s′=1

S∑
s=1

V 2
i,s′→s,t|z · pi,s′→s,t|z

)
−EL2

itz + (ELitz − ELit) (ELz − EL)
]

(16)

where

ELi,z ≡
T∑
t=1

S∑
s′=1

S∑
s=1

Vi,s′→s,t|zpi,s′→s,t|z (17)

and

ELi ≡
Z∑
z=1

wzELi,z (18)

Figure 3 shows the risk contributions to the cumulative portfolio loss volatil-
ity after 4 quarters and figure 4 show the cumulative RCs split by rating. Figure
5 present the intra-period RCs across each of the the four quarters and figure 6
the same RCs split by rating.

2.3.1 Analytical Portfolio Optimisation

One of the key advantages of having a closed form solution for the risk contribu-
tion to the portfolio volatility is that we can perform fast portfolio optimisation.
This is, in general, a very difficult problem to solve and, if a simulation approach
is used, is also very resource intensive and time consuming. Under this frame-
work, however, the optimisation can also be done analytically. For example,
assuming that the return of instrument i is a linear function of the number of
units held nit at time t:

µi,s′→s,t|z = nit · µ∗i,s′→s,t|z
where µi,s′→s,t|z is the return for instrument i at time t given a credit tran-

sition µ∗i,s′→s,t|z and conditional on state of the world z. The expected return
of the portfolio can be written as:

R (nit) =

Z∑
z=1

wz

N∑
i=1

T∑
t=1

S∑
s′=1

S∑
s=1

µi,s′→s,t|zpi,s′→s,t|z

And the average value of the portfolio at time t = 1 as:

P (nit) =

Z∑
z=1

wz

N∑
i=1

ei,s=s0,t=1|z

where s0 is the initial credit state. What we want to do is to find the portfolio
with the largest expected return R̄ and smallest possible return volatility subject

15
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to budget constrain P̄ . We solve this optimisation problem using the Lagrange
multipliers method:

Λ (nit) = σ (L;nit)− λ1

(
P (nit)− P̄

)
− λ2

(
R (nit)− R̄

)
Taking derivatives we have:

∂Λ (nit)

∂nit
=
∂σ (L, nit)

∂nit
− λ1P

∗
i − λ2R

∗
i

∂Λ (nit)

∂λ1
= P̄ − P (nit)

∂Λ (nit)

∂λ2
= R̄−R (nit)

All that is left to do, is to find the solution to the following system of
equations:

nitRCi − λ1Pi − λ2Ri = 0

N∑
i=1

nitP
∗
i − P̄ = 0

N∑
i=1

nitR
∗
i − R̄ = 0

2.3.2 Fast New Deal Analysis

When making an investment decision or when deciding whether to grant a new
credit facility to a client it is important to understand, in a timely manner, what
would be the return that this new investment will produce given the increased
risk in the context of the current portfolio. A common measure of the risk-
weighted profitability of an investment is based on the ratio of expected return µi
over the risk contribution to portfolio volatility RCi (this measure is also known
as the Sharpe ratio). The main advantage of having a closed form solution for
the risk contributions to portfolio volatility is that profitability calculations can
be performed quickly and without compromise on accuracy need to rely on slow
and computationally intensive Monte Carlo simulations.

Theoretically, in order to improve the profitability of the portfolio, the new
Sharpe ratio after on-boarding the new deal in the portfolio needs to be larger
than the original Sharpe ratio:

µP + µi
σ (L) +RCi

>
µP
σ (L)

where µP is the expected return of the portfolio before the new deal is added.
More generally, in order to take into account costs and profitability targets, the
new Sharpe ratio is usually compared against a minimum hurdle rate H:
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µP + µi
σ (L) +RCi

> H

2.4 Conditional Portfolio Statistics

In section 2.2.2 we showed how to calculate the different moments of the loss
distribution using the MGF and taking the limit α → 0. In this section, we
take this a step further and show that, for any other value of α, the solutions
represent moments of the loss distribution conditional on a given level of loss L̄.
We also show that the expected loss for instrument i conditional on a given loss
level equal its tail-risk contributions (TRCs). In addition, the same analytical
calculation provides can be used to perform reverse stress testing analytically.

2.4.1 Tail Risk Contributions

Similar to the risk contributions to portfolio loss volatility, the tail risk contri-
bution (TRC) can be defined as the contribution to the overall loss level L̄ of
instrument i,

TRCi ≡ nit
∂L̄

∂nit
(19)

where nit is the holding amount of the instrument as defined in equation
(15). Under certain conditions (see for example [16]), it can be shown that this
is equivalent to:

TRCi ≡ E
[
Li|L = L̄

]
(20)

To calculate the TRCs for a portfolio using Monte Carlo simulation, we
need to define a small loss region (ε) around the target loss level L̄ and select
only simulations that produce losses within that interval (i.e. a simple form
of rejection sampling). An approximated TRC for instrument i can the be
calculated as:

TRC∗i = E
[
Li|L− ε < L̄ < L+ ε

]
(21)

Note that TRCi and TRC∗i should convergence as ε→ 0. Hence, the smaller
the chosen interval the lesser the bias in the calculation of the TRCs. On the
other hand, choosing a value of ε that is too small will cause too many of the
Monte Carlo simulations to be rejected and its convergence will be slow. It is
important to note that this definition is not without issues (see section 3.1 of [17]
for an illuminating example). Luckily, with the techniques that we have already
developed, we can avoid these types of issues as well as the slow convergence
of Monte Carlo simulations for calculating tail risk measures. We can calculate
the TRCs as:

TRCi = EL (α) (22)
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Figure 7: Tail Risk Contributions for different profit and loss (P&L) levels for
default loss only (top), migration P&L (middle) and total P&L

where α is obtained by solving for α the following equation:

EL (α) = L̄ (23)

In other words, portfolio statistics conditional on loss level L̄ can be simply
calculated by solving equation (23) for α. Obviously, choosing L̄ = EL implies
that α = 0 and we recover the expression for the EL. Refer to Appendix B for
a proof of this result.

Figure 7 shows how the Tail Risk Contributions change with the chosen level
of loss in the portfolio and figure 8 shows how α (Alpha) and portfolio loss level
relate to each other.
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2.4.2 Reverse Stress Testing

In the previous section we showed that there is a one-to-one correspondence
between the level of loss and the parameter α of the moment generating function,
linked by the equation (23). Hence, for any loss level there is one value of α
that we can use to calculate conditional portfolio moments. For the case of the
expected loss, conditioning on a given loss level means shifting the probabilities
of transition from pi,s′→s,t|z to pi,s′→s,t|z (α) and the probability of the states of
the world from wz to wz (α). In other words, by conditioning on that loss level
we are making certain transition probabilities more likely, while at the same
time, we are changing the distribution of probabilities of states of the world. So
for example, conditioning on a large loss would have the effect of making ”bad
states of the world”, together with credit transitions that would result losses,
more likely. Therefore, selecting the most probable scenarios z conditional on
loss level is equivalent to perform a reverse stress testing analysis.

Figure 9 shows how conditioning on a given loss level changes the shape of
the probability distribution of ”states of the world”. If discrete macroeconomic
scenarios were used instead, for example by using procedures such as the ones
described in [15], conditioning on a given level of loss would make some of the
scenarios more likely, thus facilitating the selection of candidate scenarios to
perform reverse stress testing.

2.5 Analytical Solutions for Portfolios with Pooled Expo-
sures

For larger portfolios with many relatively small exposures, it is often desirable
to pool similar exposures into cohorts using some common characteristic (e.g.
origination date, credit quality, LTV, etc.). If these pools are homogeneous
enough, it is possible to assume that all the instruments in the pool are equal
to each other and have the same sensitivity to the state of the world z. Hence if
a given cohort c is formed of Nc,t|z instruments at time t, conditional on state
of the world z, the value of the loss for the cohort will be:

Vc,s′→s,t|z = Nc,t|z · vc,s′→s,t|z (24)

where vc,s′→s,t|z represents the average value of the loss for a given instru-
ment in the cohort. Using these pools it is possible to simplify the calculation
of the analytical solutions for large portfolios. For cohorted exposures the ana-
lytical formula for the portfolio variance becomes:
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σ2 (L) =

T∑
t=1

Z∑
z=1

wz

[
N∑
i=1

(
S∑

s′=1

S∑
s=1

v2
i,s′→s,t|z · pi,s′→s,t|z

)
−EL2

iz + (ELtz − ELt) (ELz − EL)
]

=

T∑
t=1

Z∑
z=1

wz

[
C∑
c=1

1

Nc|z

(
S∑

s′=1

S∑
s=1

V 2
c,s′→s,t|z · pc,s′→s,t|z

)
−EL2

iz + (ELtz − ELt) (ELz − EL)
]

where we have used the fact that umN
i=iNi|z =

∑C
c=1Nc|z and equation (24)

together with the fact that two instruments in the same cohort share the same
values of vi=1,s′→s,t|z, · · · , vi=N,s′→s,t|z = vc,s′→s,t|z and
pi=1,s′→s,t|z, · · · , pi=N,s′→s,t|z = pc,s′→s,t|z. The equations for risk contributions
for pooled exposures to portfolio volatility follow trivially from this.

The expressions for the conditional loss statistics are also easy to find. Noting
that, equation (9) becomes:

MGFL (α) =

Z∑
z=1

wzMz =

Z∑
z=1

wz

N∏
i=1

Mi|z =

Z∑
z=1

wz

C∏
c=1

(
Mc|z

)Nc|z

And from this is straight forward to show that:

EL (α) =

Z∑
z=1

wz (α)

C∑
c=1

T∑
t=1

S∑
s′=1

S∑
s=1

Vc,s′→s,t|zpc,s′→s,t|z (α)

2.5.1 Accounting for Heterogeneity in Portfolios with Pooled Expo-
sures

It is possible to reduce the error introduced when creating homogeneous pools
by allowing certain degree of heterogeneity in the cohorts. For example, imagine
that the instrument in cohort c is such that the probability of transition take
value tpc,s′→s,t|z (x) according to a density distribution function f (x), e.g.

tpc,s′→s,t|z =

∫
tpc,s′→s,t|z (x) f (x) dx

subject to the condition:

S∑
s′=1

tpc,s′→s,t|z (x) = 1

If we assume that the deviations tpc,s′→s,t|z (x) from the mean of the cohort
tpc,s′→s,t|z are proportional shocks h (x) of the form:
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tpc,s′→s,t|z =

∫
tpc,s′→s,t|z · h (x) f (x) dx

it follows that ∫
h (x) f (x) dx = 1

and since f (x) is a density function we also have that:∫
f (x) dx = 1

Using these properties is easy to see that the expression for the loss variance
for a cohorted portfolio with heterogeneous pools is:

σ2 (L) =

T∑
t=1

Z∑
z=1

wz

[
C∑
c=1

1

Nct|z

(
S∑

s′=1

S∑
s=1

V 2
c,s′→s,t|z · pc,s′→s,t|z

)

−EL2
iz

∫
h2 (x) f (x) dx+ (ELtz − ELt) (ELz − EL)

]
And the EL (α) becomes:

EL (α) =

∫
f (x)

(
Z∑
z=1

w∗z (α)

C∑
c=1

T∑
t=1

S∑
s′=1

S∑
s=1

Vc,s′→s,t|zp
∗
c,s′→s,t|z (α)h (x)

)
dx

with p∗c,s′→s,t|z and w∗z (α) having the same expression as equations 12 and

14 but with all the pc,s′→s,t|z replaced by the product h (x) · pc,s′→s,t|z.

3 Analytical Approximations & Optimal Simu-
lation in Credit Portfolio Modelling

In this section we present two approaches that can be used to estimate the
VaR/ES measures for a portfolio, first we show how Monte Carlo convergence
can be accelerated by using an optimal importance sampling technique. Then
we show the VaR and ES can be estimated using the saddlepoint approximation.

3.1 Optimal Importance Sampling

In Section 2.4.2 we showed how reverse stress testing, i.e. finding the states
of the world that would more likely result in a given portfolio loss, could be
calculated analytically. In this section we are going to formalise this result and
show how the same idea can be used to define a change of measure that results
in an ”optimal” importance sampling method. For example, to accelerate the
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convergence of the estimation of tail risk measures, it would be ideal if we
could somehow select the area of interest around a section of the tail of the
distribution, and concentrate the simlated losses around that area. Say that we
are trying to estimate the tail probability P (L > l), the importance sampling
estimator will be:

P̂ (L > l) = Eg
[
IL>l

f (L)

g (L)

]
What we would like to do is to choose the new importance measure g (x)

such as to minimise the variance of the estimator:

minq

[
V arq

(
Eg
[
IL>l

f (L)

g (L)

])]
(25)

In theory, the optimal importance sampling density function would be:

gopt (L) = IL>l
f (L)

P (L > l)
(26)

which has zero variance, however, implies that we know the very same pa-
rameter we are trying to estimate, P (L > l). Instead, we look for the ”closest”
density function to gopt that can be calculated easily. For this we use a variant
of the cross-entropy method [18]. If we define ”closest” in terms of the the
Kullback-Leibler (K-L) divergence:

DKL (g||h) ≡ Eg
[
log

(
g (L)

h (L)

)]
We can define the importance sampling density g (L) that minimises:

DKL (g||f) =

∫
g (L) log

(
g (L)

f (L)

)
dL

subject to the constrain ∫
Lg (L) dL = l

This ensures that using importance sampling the simulations will be con-
centrated in the tail of the distribution. And, at the same time, the importance
sampling density g (L) will be ”as close as possible”, in the K-L sense, to the
real loss distribution f (L) in the tail. We can carry out the minimisation using
the Lagrange multipliers method:

Λ (g (L) , λ) =

∫
g (L) log

g (L)

f (L)
dL− λ

(∫
Lg(L)dL− l

)
∫ (

log
g (L)

f (L)
− λL

)
g (L) dL− λl
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Minimising this Lagrangian we get:

δΛ (g (L) , λ) =

∫ (
log

g (L)

f (L)
− λL

)
δg (L) = 0

and thus

g (L) ∝ f (L) eλL

In order to ensure that g (L) is a proper probability density we need to
impose the normalisation condition:∫

g (L) dL = 1

which yields

g (L) = f (L)
eλL

Ef [eλL]
(27)

Now, we have already seen that the denominator is actually the MGFL (α)
with λ → α and we already have the expression for EL (α) = l from equation
(10) . The constrain can then be expressed as:∫

Lg (L) dL = EL (α) =

Z∑
z=1

wz (α) pi,s′→s,t|z (α) = l

From which we can be readily implemented without needing an expression
for f (L), let alone g (L). The algorithm to estimate g (L) would be as follows:
for each Monte Carlo run, draw the state of the world z with probability w (α)
and then, for each instrument in the portfolio, determine the credit state at
time t according to the probability of transition pi,s′→s,t|z (α). Finally, we can
recover the f (L) from g (L) inverting equation (27).

The intuition behind this, is that in order to attain losses in the tail of
the distribution two things are needed. Firstly, a ”bad” state of the world
needs to be drawn (as large losses are more likely for ”bad” z’s). Secondly, the
simulation needs to produce a state of the portfolio where large number of credit
downgrades and defaults occur (note that the probability of downgrade/default
pi,s′→s,t|z (α) increases with increasing values of α).

Figures 10 and 11 show Monte Carlo simulation results for the reference
portfolio with an without importance sampling.

3.2 Saddlepoint Approximation for Credit Portfolios in a
Multiperiod and Credit Migration Setting

In this section, we present a powerful analytical approximations to these risk
measures which are derived using the saddlepoint approximation. For this,
we follow a similar approach as in [19], however using the findings obtained
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Figure 10: Monte Carlo simulation with (red dots and dash line) and without
(bars) importance sampling. For the simulation with importance sampling 3
runs with 10,000 Monte Carlo samples where performed, for the first run alpha
was chosen to concentrated to the simulations in the left tail of the distribution.
In the second run, alpha was set to zero, thus corresponding to a simulation
without importance sampling to ensure that the body of the distribution was
estimated properly. In the last run, a positive value of alpha was chosen to
simulated the right tail of the loss distribution. For the Monte Carlo simulation
without importance sampling 1 million samples where taken
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Figure 11: The same Monte Carlo results are shown in logarithmic scale so that
the full power of the optimised importance sampling approach can be better
appreciated. Note that to achieve the same level of accuracy without impor-
tance sampling many millions of simulations would be required therefore, the
importance sampling introduced here can potentially speed up convergence by
several orders of magnitude
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in previous sections, we can extend the solutions from a single period default
no-default setting into the generic framework covered here.

In the following we will use some of the definitions introduce in Appendix
B. Please note that as in [19] we are going to assume independence of the
credit losses. Generic results under conditional independence can be obtained by
calculating weighted averages (using the weights wz) of the solutions presented
below.

The probability density function can be defined in terms of the characteristic
function as:

f (L) ≡ 1

2π

∫ ∞
−∞

e−iωLφL (ω) dω

or where it exists (as is our case here), in terms of the moment generating
function, we can write it as:

f (L) ≡ 1

2πi

∫ c+i∞

c−i∞
e−αLMGFL (α) dα

We can also write the above equation in terms of the cumulant generating
function, which from here on we denote KL (α) to simplify the notation. With
this we get:

f (L) =
1

2πi

∫ c+i∞

c−i∞
eKL(α)−αLdα

The saddlepoint method consists in deforming the path of integration in this
contour integral so that it lies along the path of steepest descent. This path is
determined by:

∂ (KL (α)− αL)

∂α
= 0 =

∂KL (α)

∂α
− L

which is equivalent to EL (α) = L. So, in this case, the path of steepest
descent goes parallel to the imaginary line and passes through α̂:

K ′L (α̂) =
∂KL (α)

∂α

∣∣∣∣
α=α̂

We can approximate the exponent KL (α) − αL using its Taylor expansion
around α̂:

KL (α)− αL ≈ KL (α̂)− αL+ (α− α̂)K ′L (α̂) +
1

2
(α− α̂)

2
K ′′L (α̂)

= KL (α̂)− α̂L+
1

2
(α− α̂)

2
K ′′L (α̂)

Noting that K ′′L (α̂) = σ2
L (α̂), we get:
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f (L) ≈ eKL(α̂)−α̂L

2πi

∫ α̂+i∞

α̂−i∞
e

1
2 (α−α̂)2σ2

L(α̂)dα

which is a Gaussian integral,

f (L) ≈ eKL(α̂)−α̂L
√

2π · σL (α̂)

If further terms are taken in the Taylor expansion, the expression can be
expanded to:

f (L) ≈ eKL(α̂)−α̂L√
2πK ′′L (α̂)

[
1 +

(
K ′′′L (α̂)

8K ′′L (α̂)
2 −

5K ′′′L (α̂)
2

24K ′′L (α̂)
3 + . . .

)]
To calculate the VaR, we can use the expression for the tail loss probability:

P (l) =
1

2π

∫ ∞
−∞

e−iωLφL (ω)
dω

ω

which, in terms of the cumulant generating function becomes:

P (l) =
1

2πi

∫ c+i∞

c−i∞
eKL(α)−αl dα

α

Proceeding as above, it is easy to show that for l > EL we get:

P (l) ≈ eKL(α̂)−α̂l+ 1
2 α̂

2σ2
L(α̂)N

(
−
√

2π · σL (α̂)
)

where N (x) is the cumulative Normal distribution. Higher-order expansions
for the tail risk contribution can be found in [20]. For another version of the
saddlepoint approximation of the tail probability formula please refer to the
Lugannani-Rice formula [21].

The approximation for the expected shortfall can be written in terms of the
results above as:

ES (l) ≡ E [L|L > l] ≈ EL · P (l) +
l − EL
α̂

f (l)

To show this we start from:

E [L|L > l] =

∫ ∞
−l

Lf (L) dL =
1

2πi

∫ ∞
−l

∫ c+i∞

c−i∞
LeKL(α)−αLdαdL

using the fact that

∂
(
eKL(α)−αL)
∂α

= (K ′L (α)− L) eKL(α)−αL

we can rewrite the expression above for the ES as:
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E [L|L > l] =

∫ ∞
−l

Lf (L) dL =

1

2πi

∫ ∞
−l

∫ c+i∞

c−i∞

[
K ′L (α)− e−KL(α)+αL ∂

(
eKL(α)−αL)
∂α

]
eKL(α)−αLdαdL

=
1

2πi

∫ c+i∞

c−i∞
K ′L (α) eKL(α)−αl dα

α
− 1

2πi

∫ ∞
−l

∫ c+i∞

c−i∞

∂
(
eKL(α)−αL)
∂α

dα

And as the second integral vanishes we are left with:

ES (l) =
1

2πi

∫ c+i∞

c−i∞
K ′L (α) eKL(α)−αl dα

α

A number of different expressions exist for the saddlepoint approximations
of the ES, [22] is a good reference. Also, in [23] one can find expressions for the
saddlepoint approximation of more general conditional expectations.
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Appendix A Risk Contributions to Porfolio Loss
Volatility

In this appendix we derive equation (16) starting from RCi (L) = nit
∂σ(L)
∂nit

. we
know that:

∂σ (L)

∂nit
=

1

2σ (L)

∂σ2 (L)

∂nit

Re-arranging equation (7) by bringing the sums in i and t to the front, we
get:

σ2 (L) =

N∑
i=1

T∑
t=1

[
Z∑
z=1

wz

(
S∑

s′=1

S∑
s=1

V 2
i,s′→s,t|z · pi,s′→s,t|z

)

−EL2
itz + (ELitz − ELit) (ELz − EL)

]
with

ELitz ≡
S∑

s′=1

S∑
s=1

Vi,s′→s,t|zpi,s′→s,t|z

and

ELit ≡
Z∑
z=1

wz

T∑
t=1

ELitz

Now noting that from equation (15) we have:

nit
∂Vi,s′→s,t|z

∂nit
= nitV

∗
i,s′→s,t|z = Vi,s′→s,t|z

And σ2 (L) is quadratic in Vi,s′→s,t|z we obtain:

nit
∂σ2 (L)

∂nit
= 2σ2 (L)

recovering equation (16):

RCi (L) =
1

σ (L)

T∑
t=1

[
Z∑
z=1

wz

(
S∑

s′=1

S∑
s=1

V 2
i,s′→s,t|z · pi,s′→s,t|z

)
−EL2

itz + (ELitz − ELit) (ELz − EL)
]
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Appendix B Analytical Solution to the Tail Risk
Contributions

In this appendix we will show the equivalence of equations (20) and (22). Let’s
start by going through some definitions.

The characteristic function of the portfolio loss distribution can be de-
fined as:

φL (ω) ≡ E
[
eiωL

]
the characteristic function is closely related to the moment generation

function of the portfolio loss distribution (MGFL). This can be defined as:

MGFL (α) ≡ E
[
eαL

]
The characteristic function of a probability distribution is always well de-

fined. On the other hand, the moment generating function does not necessarily
exist for all probability distributions. However, in our case, the loss distribution
is bounded (i.e. the maximum loss is not infinite), and all the moments of the
loss distribution can be calculated. This means that the MGFL exists and the
transformation (α→ iω) is well defined. So we can write:

φL (ω) = MGFL (iω)

Using the characteristic function, the portfolio loss probability density
function can be defined as:

f (L) ≡ 1

2π

∫ ∞
−∞

e−iωLφL (ω) dω

The loss cumulative probability function can be defined as:

F (l) ≡
∫ l

−∞
f (L) dL

And from this, the tail loss can be defined as:

P (l) ≡ 1− F (l) = Pr (L > l) =

∫ ∞
l

f (L) dL

which in terms of the characteristic function becomes:

P (l) =

∫ ∞
l

f (L) dL =
1

2π

∫ ∞
l

∫ ∞
−∞

e−iωLφL (ω) dωdL

Taking the integral over L and using the fact that the probability vanishes
as L→∞, we get:

P (l) =
1

2π

∫ ∞
−∞

e−iωLφL (ω)
dω

ω
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To calculate the tail risk contributions, we want to vary nit while keeping
the tail loss probability constant and fixed at L = L̄ (note that the derivative
of the probability is zero since it is fixed for a particular confidence level and
does not depend on nit). In other words,

0 =
∂P (l)

∂nit

∣∣∣∣
L=L̄

=
1

2π

∫ ∞
−∞

[
∂φL (ω)

∂nit
− ∂L̄

∂nit
iωφL (ω)

]
e−iωL̄φL (ω)

dω

ω

using the fact that the integrand must vanish we get:

∂L̄

∂nit
=

1

iωφL (ω)

∂φL (ω)

∂nit

∣∣∣∣
L=L̄

And multiplying by nit we recover the definition of the tail risk contributions:

TRCi = nit
∂L̄

∂nit
=

nit
iωφL (ω)

∂φL (ω)

∂nit

∣∣∣∣
L=L̄

Now using the transformation iω → α we get:

TRCi = nit
∂L̄

∂nit
=

nit
αMGFL (α)

∂MGFL (α)

∂nit

∣∣∣∣
L=L̄

From equations (9) and (15) is easy to see that:

nit
∂MGFL (α)

∂nit
= α

∂MGFL (α)

∂α

And therefore:

TRCi = nit
∂L̄

∂nit
=

1

MGFL (α)

∂MGFL (α)

∂α

∣∣∣∣
L=L̄

which from equation (10), can be solved for α using

EL (α) = L̄.
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